cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A171260 Numbers n such that sigma(n) = 15*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

840, 11880, 12180, 25080, 32130, 67830, 79170, 172260, 282744, 312840, 363660, 569160, 596904, 634410, 696696, 843780, 846090, 959310, 996840, 1119690, 1201560, 1402440, 1542840, 1607340, 1929312, 2104440, 2247210, 2363790, 3309240, 3368040, 3883680
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 15 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,3e6, sigma(k) - 15*eulerphi(k) || print1(k", "));

A065818 Numbers k such that 3*phi(k) = 2*sigma(k).

Original entry on oeis.org

5, 119, 3553, 4147, 8323, 198679, 218569, 248501, 298129, 468809, 547261, 1098349, 1398061, 1947379, 1990417, 3076549, 3453289, 3994753, 6969529, 7690249, 8790439, 11905457, 13097327, 14346577, 14732011, 14988967, 15286973, 16145269, 20851493, 21622867, 23083081, 24924599, 26218777, 26326867
Offset: 1

Views

Author

Labos Elemer, Nov 23 2001

Keywords

Examples

			n = 3553, 3*phi(3553) = 8640 = 2*4320 = 2*sigma(3553).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[20000000], 3EulerPhi[#] == 2DivisorSigma[1, #] &]  (* Harvey P. Dale, Apr 18 2011 *)
  • PARI
    isok(k) = { 3*eulerphi(k) == 2*sigma(k) } \\ Harry J. Smith, Oct 31 2009

Extensions

a(22)-a(28) from Harry J. Smith, Oct 31 2009

A065822 Numbers k such that 5*phi(k) = 4*sigma(k).

Original entry on oeis.org

323, 377, 22591, 42619, 49751, 106711, 119647, 180947, 2782057, 2980823, 2981233, 3794737, 5112427, 5285743, 5732179, 5964229, 6073267, 6669797, 6769927, 7049407, 8025547, 8350633, 8954023, 9373213, 10039471, 10140517, 10842901
Offset: 1

Views

Author

Labos Elemer, Nov 23 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1085*10^4],5EulerPhi[#]==4DivisorSigma[1,#]&] (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    { n=0; for (m=1, 10^9, if (5*eulerphi(m) == 4*sigma(m), write("b065822.txt", n++, " ", m); if (n==60, return)) ) } \\ Harry J. Smith, Nov 01 2009
    
  • PARI
    is(n) = {my(f=factor(n)); 5*eulerphi(f) == 4*sigma(f);} \\ Amiram Eldar, Jun 26 2024

Extensions

a(9)-a(27) from Harry J. Smith, Nov 01 2009

A065824 Smallest solution m to (n+1)*phi(m) = n*sigma(m), or -1 if no solution exists.

Original entry on oeis.org

3, 5, 7, 323, 11, 13, 899, 17, 19, 1763, 23, 5249, 3239, 29, 31, 979801, 5459, 37, 10763, 41, 43, 9179, 47, 9701, 10403, 53, 12319, 5646547, 59, 61, 24569, 19109, 67, 19043, 71, 73, 22499, 50819, 79, 41309, 83, 32639, 46979, 89, 34579, 39059, 125969
Offset: 1

Views

Author

Labos Elemer, Nov 23 2001

Keywords

Comments

If p = a(n) is a prime solution, then (n+1)*(p-1) = n*(p+1) and p = 2n+1, so position for p if it is in fact a minimal solution is at n = (p-1)/2. E.g. 29 appears at 14th position shown by A005097. On the other hand large and (seemingly always composite) solutions arise at indices shown essentially by A047845. Also, differences between the sites of two consecutive small prime solutions appears to be d/2, half the difference between consecutive primes (A001223).

Crossrefs

Programs

  • Mathematica
    max = 10^7; a[n_] := For[m = 3, m <= max, m++, If[(n+1)*EulerPhi[m] == n*DivisorSigma[1, m], Print[m]; Return[m]]] /. Null -> -1; Array[a, 50] (* Jean-François Alcover, Oct 08 2016 *)
  • Python
    from itertools import count
    from math import prod
    from sympy import factorint
    def A065824(n):
        for m in count(1):
            f = factorint(m)
            if (n+1)*m*prod((p-1)**2 for p in f)==n*prod(p**(e+2)-p for p,e in f.items()):
                return m # Chai Wah Wu, Aug 12 2024

Formula

(n+1)*A000010(a(n)) = n*A000203(a(n)), smallest x=a(n) solutions.

A065823 Numbers k such that 6*phi(k) = 5*sigma(k).

Original entry on oeis.org

11, 527, 923, 36859, 40549, 55309, 88519, 120139, 138301, 280579, 293501, 313807, 529789, 719927, 2458859, 4864117, 6191413, 6811243, 7297877, 8402663, 8624107, 9487477, 10475821, 12356441, 12940957, 13624717, 13971229, 14869033, 15293137
Offset: 1

Views

Author

Labos Elemer, Nov 23 2001

Keywords

Comments

Not all terms are squarefree: a(74) = 137640191 = 13^2 * 89 * 9151. - Charles R Greathouse IV, Nov 13 2015
Apart from the first term, no terms are divisible by 2, 3, 5, 7, or 11. - Charles R Greathouse IV, Nov 13 2015

Crossrefs

Subsequence of A008364.

Programs

  • PARI
    n=0; for (m=1, 10^9, if (6*eulerphi(m) == 5*sigma(m), write("b065823.txt", n++, " ", m); if (n==70, return))) \\ Harry J. Smith, Nov 01 2009
    
  • PARI
    is(n)=my(f=factor(n)); 6*eulerphi(f)==5*sigma(f) \\ Charles R Greathouse IV, Nov 13 2015

Extensions

Terms a(16)-a(29) from Harry J. Smith, Nov 01 2009

A110597 Balanced numbers (A020492) k such that k mod 12 = 1.

Original entry on oeis.org

1, 1045, 29029, 50065, 64285, 87685, 1390753, 2011009, 3189625, 7711405, 39298441, 53238625, 68393065, 75416341, 96345613, 225938245, 228404605, 231562825, 233591605, 279999445, 458406445, 462027565, 470527057, 491291125, 513574369, 663605761, 666373825
Offset: 1

Views

Author

Walter Kehowski, Sep 13 2005

Keywords

Comments

For the first 27 terms, the quotient sigma(n)/phi(n) is 1, 2 or 3.

Crossrefs

Intersection of A017533 and A020492.

Programs

  • Maple
    with(numtheory); BNM1:=[]: for z from 1 to 1 do for m from 0 to 500000 do n:=12*m+1; if sigma(n) mod phi(n) = 0 then BNM1:=[op(BNM1),n] fi; od; od; BNM1;
  • Mathematica
    Select[Range[10^7], Mod[#, 12] == 1 && Divisible[DivisorSigma[1, #], EulerPhi[#]] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    forstep(n=1,1e5,12, if(sigma(n)%eulerphi(n)==0, print1(n", "))) \\ Charles R Greathouse IV, Nov 27 2013

Extensions

a(10)-a(27) from Donovan Johnson, Aug 30 2012

A110598 Balanced numbers k such that k mod 12 = 5.

Original entry on oeis.org

137885, 145145, 3501605, 6605945, 6953765, 8409305, 10055045, 11413205, 11569805, 16540205, 18545285, 19648805, 21902705, 22806905, 25965005, 26655005, 29811665, 45680921, 71569745, 79989845, 91681289, 196492205, 214218389, 223086125, 229554941, 233601641
Offset: 1

Views

Author

Walter Kehowski, Sep 13 2005

Keywords

Comments

For the first 26 terms, the quotient sigma(k)/phi(k) is 2 or 3.

Crossrefs

Intersection of A017581 and A020492.

Programs

  • Maple
    with(numtheory); BNM5:=[]: for z from 1 to 1 do for m from 1 to 1000000 do n:=12*m+5; if sigma(n) mod phi(n) = 0 then BNM5:=[op(BNM5),n] fi; od; od; BNM5;
  • Mathematica
    Select[Range[5,12000000,12],MemberQ[{2,3},DivisorSigma[1,#]/EulerPhi[#]]&]  (* Harvey P. Dale, May 06 2012 *)

Extensions

a(10)-a(26) from Donovan Johnson, Aug 30 2012

A110599 Balanced numbers n such that n mod 12 = 7.

Original entry on oeis.org

24871, 58435, 140335, 1529983, 2086903, 3722875, 3830827, 8697535, 13932919, 16408315, 21578755, 27882595, 76319155, 126245119, 183531439, 192871987, 198394675, 207619555, 229523371, 337800463, 361504507, 416690995, 440127655, 535044055, 693298315, 729802255
Offset: 1

Views

Author

Walter Kehowski, Sep 13 2005

Keywords

Comments

For the first 26 terms, the quotient (sigma(n)/phi(n)) is 2 or 3.

Crossrefs

Intersection of A017605 and A020492.

Programs

  • Maple
    with(numtheory); BNM7:=[]: for z from 1 to 1 do for m from 1 to 1000000 do n:=12*m+7; if sigma(n) mod phi(n) = 0 then BNM7:=[op(BNM7),n] fi; od; od; BNM7;
  • Mathematica
    Select[Range[10^7], Mod[#, 12] == 7 && Divisible[DivisorSigma[1, #], EulerPhi[#]] &] (* Amiram Eldar, Dec 04 2019 *)

Extensions

Duplicate terms removed and a(8)-a(26) from Donovan Johnson, Aug 30 2012

A292390 Numbers n such that psi(n) = 2*phi(n).

Original entry on oeis.org

3, 9, 27, 35, 81, 175, 243, 245, 729, 875, 1045, 1225, 1715, 2187, 4375, 5225, 6125, 6561, 8575, 11495, 12005, 19683, 19855, 21875, 24871, 26125, 29029, 30625, 42875, 50065, 57475, 58435, 59049, 60025, 64285, 84035, 87685, 99275, 109375, 126445, 130625, 137885, 140335, 153125
Offset: 1

Views

Author

Keywords

Comments

Squarefree terms are 3, 35, 1045, 24871, 29029, 50065, 58435, 64285, ... Squarefree terms of this sequence are in A062699. Note that A062699 also has terms that are not squarefree: 2011009, 3189625, 3722875, ...
If n is in the sequence, then so are all numbers that have the same set of prime factors as n. - Robert Israel, Sep 15 2017
All terms are odd. Terms divisible by 3 are powers of 3. - Robert Israel, Sep 18 2017

Examples

			3^k is a term for all k > 0 since psi(3^k) = 4*3^(k-1) = 2*phi(3^k).
		

Crossrefs

Programs

  • Maple
    pp:= n -> mul((p+1)/(p-1), p = numtheory:-factorset(n)):
    select(pp=2, [seq(i,i=1..200000,2)]); # Robert Israel, Sep 15 2017
  • Mathematica
    psi[n_] := n*Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; Select[ Range@ 200000, 2EulerPhi[#] == psi[#] &]
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    isok(n) = a001615(n)==2*eulerphi(n); \\ after Charles R Greathouse IV at A001615
Previous Showing 11-19 of 19 results.