cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A234318 Squares t^2 = (p+q+r+s)/4 which are the arithmetic mean of four consecutive primes such that p < t^2 < q < r < s.

Original entry on oeis.org

15876, 35721, 59049, 65025, 488601, 828100, 1144900, 3857296, 4822416, 4901796, 5107600, 5322249, 5856400, 6100900, 6760000, 10536516, 11716929, 12503296, 13468900, 14197824, 14638276, 15163236, 18748900, 21455424, 22127616, 22638564, 24049216, 24098281, 24108100
Offset: 1

Views

Author

K. D. Bajpai, Dec 23 2013

Keywords

Examples

			15876 is in the sequence because 15876 = 126^2 = (15859+15877+15881+15887)/4, the arithmetic mean of four consecutive primes.
35721 is in the sequence because 35721 = 189^2 = (35677+35729+35731+35747)/4, the arithmetic mean of four consecutive primes.
		

Crossrefs

Cf. A000290 (squares: a(n) = n^2).
Cf. A062703 (squares: sum of two consecutive primes).
Cf. A069495 (squares: arithmetic mean of two consecutive primes).
Cf. A234240 (cubes: arithmetic mean of three consecutive primes).
Cf. A234297 (squares: arithmetic mean of three consecutive primes).

Programs

  • Maple
    KD := proc() local a,b,d,e,f,g; a:=n^2;b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=nextprime(e); g:=(b+d+e+f)/4; if a=g then RETURN (a); fi; end: seq(KD(), n=2..10000);
  • Mathematica
    fcpQ[{a_,b_,c_,d_}]:=Module[{m=Mean[{a,b,c,d}]},IntegerQ[ Sqrt[ m]] && a< m< b]; Mean/@Select[Partition[Prime[Range[1600000]],4,1],fcpQ] (* Harvey P. Dale, Apr 24 2017 *)
  • PARI
    list(lim)=my(v=List(), p=2, q=3, r=5, t); forprime(s=7, nextprime(nextprime(lim+1)+1), t=(p+q+r+s)/4; if(denominator(t)==1 && issquare(t) && t < q, listput(v, t)); p=q; q=r; r=s); Vec(v) \\ Charles R Greathouse IV, Jan 03 2014

Extensions

Definition corrected by Michel Marcus and Charles R Greathouse IV, Jan 03 2014

A245360 Perfect powers which are the sum of two consecutive primes.

Original entry on oeis.org

8, 36, 100, 128, 144, 216, 576, 1764, 2304, 3844, 5184, 7056, 8100, 8192, 12100, 14400, 14884, 21952, 30276, 41616, 43264, 48400, 53824, 57600, 69696, 74088, 93636, 106276, 112896, 138384, 148996, 166464, 168100, 197136, 206116, 207936, 219024, 220900, 224676, 272484, 279936
Offset: 1

Views

Author

Derek Orr, Jul 18 2014

Keywords

Examples

			47 + 53 = 100 = 10^2, so 100 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Total/@Partition[Prime[Range[13100]],2,1],GCD@@FactorInteger[#][[All,2]]>1&] (* Harvey P. Dale, Jan 22 2019 *)
  • PARI
    for(n=1,10^5,q=prime(n)+prime(n+1);if(ispower(q),print1(q,", ")))
    
  • PARI
    m=10^8; v=[]; forstep(b=2, sqrt(m), 2, forprime(p=2, 40, n=b^p; if(n>m,break); if(n==precprime(n/2)+nextprime(n/2+1), v=concat(v,n)))); v=vecsort(v) \\ Faster program. Jens Kruse Andersen, Jul 20 2014

A287027 Least sum s of consecutive prime numbers starting with prime(n) such that s is a perfect square.

Original entry on oeis.org

100, 961, 36, 14017536, 484, 49, 36, 134689, 354025, 80089, 443556, 121, 47524, 7744, 100, 700569, 344956329, 48841, 5329, 144, 324, 39601, 22801, 8649, 239438955625, 12250000, 197136, 222784, 147456, 319225, 316969, 24649, 576, 2975625, 7396, 21316, 70036245333532859364
Offset: 1

Views

Author

Zak Seidov, May 18 2017

Keywords

Comments

Squares that are the sum of 4 consecutive primes: 36, 324, 576, 1764, 2304, 4900, 20736, 63504, 66564, 128164, 142884, 150544, 156816, 183184, 236196, 256036, 260100, 311364, 369664, 414736.
Squares that are the sum of 5 consecutive primes: 961, 1089, 1681, 17689, 18769, 21025, 23409, 45369, 76729, 80089, 97969, 124609, 218089, 235225, 290521, 421201, 434281.
Squares that are the sum of 6 consecutive primes: 3600, 24336, 25600, 47524, 66564, 98596, 129600, 138384, 228484, 236196, 331776, 379456, 404496, 490000, 559504.
Squares that are the sum of 7 consecutive primes: 169, 625, 2209, 10201, 25921, 235225, 342225, 361201, 380689, 383161, 426409, 508369, 531441, 537289, 543169, 564001, 603729.
Note that A007504(m) - A007504(n) ~ m^2 log(m)/2 as m -> infinity. Heuristically this has probability ~ 1/(m sqrt(2 log(m))) of being a square. Since the sum of these probabilities diverges, on the basis of the second Borel-Cantelli lemma we should expect a(n) to exist. Of course, this is not a proof. Moreover, since the sum diverges very slowly, we might expect some very large values of a(n). - Robert Israel, May 18 2017

Examples

			Sum of set {2,3,5,7,11,13,17,19,23} is 100 = 10^2, sum of set {3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83} is 961=31^2, sum of set {5,7,11,13}=36=6^2.
		

Crossrefs

Cf. A062703 (squares that are the sum of 2 consecutive primes), A080665 (squares that are the sum of 3 consecutive primes), A034707 (numbers that are sums of consecutive primes).
Cf. A007504.

Programs

  • Maple
    f:= proc(n) local p, s;
      p:= ithprime(n); s:= p;
    while not issqr(s) do p:= nextprime(p); s:= s+p od:
      s
    end proc:
    map(f, [$1..36]); # Robert Israel, May 18 2017
  • Mathematica
    Table[Set[{k, s}, {n, 0}]; While[! IntegerQ@ Sqrt[AddTo[s, Prime@ k]], k++]; s, {n, 36}] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    a(n) = my(s=0); forprime(p=prime(n), , s=s+p; if(issquare(s), return(s))) \\ Felix Fröhlich, May 25 2017

Extensions

Missing a(25) and a(37) from Giovanni Resta, May 18 2017

A175097 Primes in A139013.

Original entry on oeis.org

3, 5, 31, 61, 163, 193, 227, 383, 401, 521, 631, 653, 883, 1019, 1151, 1229, 1433, 1601, 1669, 1801, 1873, 2437, 2729, 3191, 3671, 4013, 4049, 4127, 4447, 5507, 5651, 5701, 5813, 6079, 6199, 6353, 6569, 6823, 6857, 7507, 7529, 7873, 7907, 8291, 8419, 8461
Offset: 1

Views

Author

Zak Seidov, Feb 03 2010

Keywords

Crossrefs

Previous Showing 11-14 of 14 results.