cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A368951 Number of connected labeled graphs with n edges and n vertices and with loops allowed.

Original entry on oeis.org

1, 1, 2, 10, 79, 847, 11436, 185944, 3533720, 76826061, 1880107840, 51139278646, 1530376944768, 49965900317755, 1767387701671424, 67325805434672100, 2747849045156064256, 119626103584870552921, 5533218319763109888000, 270982462739224265922466
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2024

Keywords

Comments

Exponential transform appears to be A333331. - Gus Wiseman, Feb 12 2024

Examples

			From _Gus Wiseman_, Feb 12 2024: (Start)
The a(0) = 1 through a(3) = 10 loop-graphs:
  {}  {11}  {11,12}  {11,12,13}
            {22,12}  {11,12,23}
                     {11,13,23}
                     {22,12,13}
                     {22,12,23}
                     {22,13,23}
                     {33,12,13}
                     {33,12,23}
                     {33,13,23}
                     {12,13,23}
(End)
		

Crossrefs

This is the connected covering case of A014068.
The case without loops is A057500, covering case of A370317.
Allowing any number of edges gives A062740, connected case of A322661.
This is the connected case of A368597.
The unlabeled version is A368983, connected case of A368984.
For at most n edges we have A369197.
A000085 counts set partitions into singletons or pairs.
A006129 counts covering graphs, connected A001187.

Programs

  • Maple
    egf:= (L-> 1-L/2-log(1+L)/2-L^2/4)(LambertW(-x)):
    a:= n-> n!*coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 10 2024
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(-log(1-t)/2 + t/2 - t^2/4 + 1))}

Formula

a(n) = A000169(n) + A057500(n) for n > 0.
E.g.f.: 1 - log(1-T(x))/2 + T(x)/2 - T(x)^2/4 where T(x) = -LambertW(-x) is the e.g.f. of A000169.
From Peter Luschny, Jan 10 2024: (Start)
a(n) = (exp(n)*Gamma(n + 1, n) - (n - 1)*n^(n - 1))/(2*n) for n > 0.
a(n) = (1/2)*(A063170(n)/n - A053506(n)) for n > 0. (End)

A369146 Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 8, 60, 471, 4911, 78797, 2207405, 113740613, 10926218807, 1956363413115, 652335084532025, 405402273420833338, 470568642161119515627, 1023063423471189429817807, 4178849203082023236054797465, 32168008290073542372004072630072, 468053896898117580623237189882068990
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{1,2}}
                         {{1},{2},{3},{1,2}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A000666, labeled A006125 (shifted).
For a unique choice we have A087803, labeled A088957.
The case without loops is A140637, labeled A367867 (covering A367868).
For exactly n edges we have A368835, labeled A368596.
The labeled complement is A368927, covering A369140.
The labeled version is A369141, covering A369142.
The complement is counted by A369145, covering A369200.
The covering case is A369147.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]

Formula

Partial sums of A369147.
a(n) = A000666(n) - A369145(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A368730 Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges, such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 0, 6, 180, 4560, 117600, 3234588, 96119982, 3092585310, 107542211535, 4029055302855, 162040513972623, 6970457656110039, 319598974394563500, 15568332397812799920, 803271954062642638830, 43778508937914677872788, 2513783434620146896920843
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(4) = 6 set-systems:
  {{1},{2},{1,2},{3,4}}
  {{1},{3},{1,3},{2,4}}
  {{1},{4},{1,4},{2,3}}
  {{2},{3},{1,4},{2,3}}
  {{2},{4},{1,3},{2,4}}
  {{3},{4},{1,2},{3,4}}
		

Crossrefs

The case of a unique choice appears to be A000272.
The version without the choice condition is A368597, non-covering A014068.
The complement appears to be A333331.
The non-covering case is A368596, allowing edges of any size A368600.
Allowing any number of edges of any size gives A367903, ranks A367907.
Allowing any number of non-singletons gives A367868, non-covering A367867.
A000085 counts set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
A322661 counts labeled covering half-loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

a(n) = A368596(n) + A368597(n) - A014068(n). - Andrew Howroyd, Jan 10 2024

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 10 2024

A368924 Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Triangle begins:
      1
      0      1
      0      2      1
      1      9      6      1
     15     68     48     12      1
    222    720    510    150     20      1
   3670   9738   6825   2180    360     30      1
  68820 159628 110334  36960   6895    735     42      1
Row n = 3 counts the following loop-graphs:
  {{1,2},{1,3},{2,3}}  {{1},{1,2},{1,3}}  {{1},{2},{1,3}}  {{1},{2},{3}}
                       {{1},{1,2},{2,3}}  {{1},{2},{2,3}}
                       {{1},{1,3},{2,3}}  {{1},{3},{1,2}}
                       {{2},{1,2},{1,3}}  {{1},{3},{2,3}}
                       {{2},{1,2},{2,3}}  {{2},{3},{1,2}}
                       {{2},{1,3},{2,3}}  {{2},{3},{1,3}}
                       {{3},{1,2},{1,3}}
                       {{3},{1,2},{2,3}}
                       {{3},{1,3},{2,3}}
		

Crossrefs

Column k = n-1 is A002378.
The case of a unique choice is A061356, row sums A000272.
Column k = 0 is A137916, unlabeled version A137917.
Row sums appear to be A333331.
The complement has row sums A368596, covering case A368730.
The unlabeled version is A368926.
Without the choice condition we have A368928, A116508, A367863, A368597.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
  • PARI
    T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]}
    { my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024

Formula

E.g.f.: A(x,y) = exp(-log(1-T(x))/2 - T(x)/2 + y*T(x) - T(x)^2/4) where T(x) = -LambertW(-x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 14 2024

Extensions

a(36) onwards from Andrew Howroyd, Jan 14 2024

A369145 Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Comments

a(n) is the number of graphs with loops on n unlabeled vertices with every connected component having no more edges than vertices. - Andrew Howroyd, Feb 02 2024

Examples

			The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{1,2}}      {{1,2}}
             {{1},{2}}    {{1},{2}}
             {{1},{1,2}}  {{1},{1,2}}
                          {{1},{2,3}}
                          {{1,2},{1,3}}
                          {{1},{2},{3}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we get A000666, labeled A006125 (shifted left).
The case of a unique choice is A087803, labeled A088957.
Without loops we have A134964, labeled A133686 (covering A367869).
For exactly n edges and no loops we have A137917, labeled A137916.
The labeled version is A368927, covering A369140.
The labeled complement is A369141, covering A369142.
For exactly n edges we have A368984, labeled A333331 (maybe).
The complement for exactly n edges is A368835, labeled A368596.
The complement is counted by A369146, labeled A369141 (covering A369142).
The covering case is A369200.
The complement for exactly n edges and no loops is A369201, labeled A369143.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable labeled graphs, covering A367868.
A368927 counts choosable labeled loop-graphs, covering A369140.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

Partial sums of A369200.
Euler transform of A369289. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A321728 Number of integer partitions of n whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 28, 37, 50
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

First differs from A000701 at a(11) = 28, A000701(11) = 27
A vertical section is a partial Young diagram with at most one square in each row.
Conjecture: a(n) is the number of non-half-loop-graphical partitions of n. An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex, to be distinguished from a full loop, which has two equal vertices.

Examples

			The a(2) = 1 through a(9) = 14 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the non-half-loop-graphical partitions up to n = 9:
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (31)  (32)  (33)   (43)   (44)    (54)
                  (41)  (42)   (52)   (53)    (63)
                        (51)   (61)   (62)    (72)
                        (411)  (331)  (71)    (81)
                               (421)  (422)   (432)
                               (511)  (431)   (441)
                                      (521)   (522)
                                      (611)   (531)
                                      (5111)  (621)
                                              (711)
                                              (4311)
                                              (5211)
                                              (6111)
For example, a complete list of all half/full-loop-graphs with degrees y = (4,3,1) is the following:
  {{1,1},{1,2},{1,3},{2,2}}
  {{1},{2},{1,1},{1,2},{2,3}}
  {{1},{2},{1,1},{1,3},{2,2}}
  {{1},{3},{1,1},{1,2},{2,2}}
None of these is a half-loop-graph, as they have full loops (x,x), so y is counted under a(8).
		

Crossrefs

The complement is counted by A321729.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are A029889 or A339843 (covering).
The version for full loops is A339655.
A027187 counts partitions of even length, with Heinz numbers A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs, ranked by A340018/A340019.
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Length[Select[IntegerPartitions[n],Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]=={}&]],{n,8}]

Formula

a(n) is the number of integer partitions y of n such that the coefficient of m(y) in e(y) is zero, where m is monomial and e is elementary symmetric functions.
a(n) = A000041(n) - A321729(n).

A369143 Number of labeled simple graphs with n edges and n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 30, 1335, 47460, 1651230, 59636640, 2284113762, 93498908580, 4099070635935, 192365988161490, 9646654985111430, 515736895712230192, 29321225548502776980, 1768139644819077541440, 112805126206185257070660, 7595507651522103787077270, 538504704005397535690160274
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2024

Keywords

Examples

			The term a(5) = 30 counts all permutations of the graph {{1,2},{1,3},{1,4},{2,3},{2,4}}.
		

Crossrefs

The version without the choice condition is A116508, covering A367863.
The complement is A137916.
Allowing any number of edges gives A367867, covering A367868.
The version with loops is A368596, covering A368730, unlabeled A368835.
For set-systems we have A368600, for any number of edges A367903.
The covering case is A369144.
A006125 counts simple graphs, unlabeled A000088.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

a(n) = A116508(n) - A137916(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024

A369196 Number of labeled loop-graphs with n vertices and at most as many edges as covered vertices.

Original entry on oeis.org

1, 2, 7, 39, 320, 3584, 51405, 900947, 18661186, 445827942, 12062839691, 364451604095, 12157649050827, 443713171974080, 17583351295466338, 751745326170662049, 34485624653535808340, 1689485711682987916502, 88030098291829749593643, 4860631073631586486397141
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 1 through a(2) = 7 loop-graphs:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

The version counting all vertices is A066383, without loops A369192.
The loopless case is A369193, with case of equality A367862.
The covering case is A369194, connected A369197, minimal case A001862.
The case of equality is A369198, covering case A368597.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs, also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A322661 counts covering loop-graphs, unlabeled A322700.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Length[#]<=Length[Union@@#]&]],{n,0,5}]

Formula

Binomial transform of A369194.

A370169 Number of unlabeled loop-graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 1, 3, 7, 19, 48, 135, 373, 1085, 3184, 9590, 29258, 90833, 285352, 908006, 2919953, 9487330, 31111997, 102934602, 343389708, 1154684849, 3912345408, 13353796977, 45906197103, 158915480378, 553897148543, 1943627750652, 6865605601382, 24411508473314, 87364180212671, 314682145679491
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2024

Keywords

Examples

			The a(0) = 1 through a(4) = 19 loop-graph edge sets (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}          {{1,2},{3,4}}
             {{1},{2}}    {{1,2},{1,3}}        {{1},{2},{3,4}}
             {{1},{1,2}}  {{1},{2},{3}}        {{1},{1,2},{3,4}}
                          {{1},{2},{1,3}}      {{1},{2,3},{2,4}}
                          {{1},{1,2},{1,3}}    {{1},{2},{3},{4}}
                          {{1},{1,2},{2,3}}    {{1,2},{1,3},{1,4}}
                          {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{2,4}}
                                               {{1},{2},{3},{1,4}}
                                               {{1},{2},{1,2},{3,4}}
                                               {{1},{2},{1,3},{1,4}}
                                               {{1},{2},{1,3},{2,4}}
                                               {{1},{2},{1,3},{3,4}}
                                               {{1},{1,2},{1,3},{1,4}}
                                               {{1},{1,2},{1,3},{2,4}}
                                               {{1},{1,2},{2,3},{2,4}}
                                               {{1},{1,2},{2,3},{3,4}}
                                               {{1},{2,3},{2,4},{3,4}}
                                               {{1,2},{1,3},{1,4},{2,3}}
                                               {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The case of equality is A368599, covering case of A368598.
The labeled version is A369194, covering case of A066383.
This is the covering case of A370168.
The loopless version is the covering case of A370315, labeled A369192.
This is the loopless version is A370316, labeled A369191.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[#]<=n&]]],{n,0,5}]
  • PARI
    \\ G defined in A070166.
    a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n,A)-G(n-1,A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 19 2024

A339844 Number of distinct sorted degree sequences among all n-vertex loop-graphs.

Original entry on oeis.org

1, 2, 6, 16, 51, 162, 554, 1918, 6843, 24688, 90342, 333308, 1239725
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2020

Keywords

Comments

In the covering case, these degree sequences, sorted in decreasing order, are the same thing as loop-graphical partitions (A339656). An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices.
The following are equivalent characteristics for any positive integer n:
(1) the prime indices of n can be partitioned into distinct pairs, i.e. into a set of loops and edges;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The a(0) = 1 through a(3) = 16 sorted degree sequences:
  ()  (0)  (0,0)  (0,0,0)
      (2)  (0,2)  (0,0,2)
           (1,1)  (0,1,1)
           (1,3)  (0,1,3)
           (2,2)  (0,2,2)
           (3,3)  (0,3,3)
                  (1,1,2)
                  (1,1,4)
                  (1,2,3)
                  (1,3,4)
                  (2,2,2)
                  (2,2,4)
                  (2,3,3)
                  (2,4,4)
                  (3,3,4)
                  (4,4,4)
For example, the loop-graphs
  {{1,1},{2,2},{3,3},{1,2}}
  {{1,1},{2,2},{3,3},{1,3}}
  {{1,1},{2,2},{3,3},{2,3}}
  {{1,1},{2,2},{1,3},{2,3}}
  {{1,1},{3,3},{1,2},{2,3}}
  {{2,2},{3,3},{1,2},{1,3}}
all have degrees y = (3,3,2), so y is counted under a(3).
		

Crossrefs

See link for additional cross references.
The version without loops is A004251, with covering case A095268.
The half-loop version is A029889, with covering case A339843.
Loop-graphs are counted by A322661 and ranked by A320461 and A340020.
The covering case (no zeros) is A339845.
A007717 counts unlabeled multiset partitions into pairs.
A027187 counts partitions of even length, with Heinz numbers A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A101048 counts partitions into semiprimes.
A339655 counts non-loop-graphical partitions of 2n.
A339656 counts loop-graphical partitions of 2n.
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{1,2}]/.{x_Integer}:>{x,x}]]],{n,0,5}]

Extensions

a(7)-a(12) from Andrew Howroyd, Jan 10 2024
Previous Showing 21-30 of 50 results. Next