cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A063468 Number of Pythagorean triples in the range [1..n], i.e., the number of integer solutions to x^2 + y^2 = z^2 with 1 <= x,y,z <= n.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 8, 8, 10, 10, 10, 12, 12, 12, 12, 12, 16, 18, 18, 18, 20, 22, 22, 22, 22, 24, 26, 26, 28, 28, 30, 32, 34, 34, 34, 34, 36, 36, 36, 36, 36, 40, 42, 44, 46, 46, 48, 48, 48, 50, 50, 52, 54, 54, 54, 54, 62, 62, 62, 64, 64, 66, 66, 66, 68, 70
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 27 2001

Keywords

Examples

			For n = 5 the Pythagorean triples are (3, 4, 5) and (4, 3, 5), so a (5) = 2.
For n = 10 the Pythagorean triples are (3, 4, 5), (4, 3, 5), (6, 8, 10) and (8, 6, 10), so a(10) = 4.
For n = 17 the Pythagorean triples are (3, 4, 5), (4, 5, 3), (5, 12, 13), (12, 5, 13), (6, 8, 10), (8, 6, 10), (8, 15, 17), (15, 8, 17), (9, 12, 15) and (12, 9, 15), so a(17) = 10.
		

Crossrefs

a(n) = 2*partial sums of A046080(n).

Programs

  • Magma
    [#[: x in [1..n], y in [1..n]| IsSquare(x^2+y^2) and Floor(Sqrt(x^2+y^2)) le n]:n in [1..74]]; // Marius A. Burtea, Jan 22 2020
  • Mathematica
    nq[n_] := SquaresR[2, n^2]/4 - 1; Accumulate@ Array[nq, 80] (* Giovanni Resta, Jan 23 2020 *)

Extensions

Corrected and extended by Vladeta Jovovic, Jul 28 2001

A091143 Number of Pythagorean triples mod 2^n; i.e., number of solutions to x^2 + y^2 = z^2 mod 2^n.

Original entry on oeis.org

1, 4, 24, 96, 448, 1792, 7680, 30720, 126976, 507904, 2064384, 8257536, 33292288, 133169152, 534773760, 2139095040, 8573157376, 34292629504, 137304735744, 549218942976, 2197949513728, 8791798054912, 35175782154240, 140703128616960, 562881233944576
Offset: 0

Views

Author

T. D. Noe, Dec 22 2003

Keywords

Comments

This Mathematica program is much more efficient than the one given in A062775.

Crossrefs

Cf. A062775 (number of Pythagorean triples mod n).

Programs

  • Maple
    seq(op([(2^k-1)*2^(3*k-3),(2^k-1)*2^(3*k-1)]),k=1..30); # Robert Israel, Dec 03 2017
  • Mathematica
    Table[n = 2^k; b = Table[0, {n}]; Do[ b[[1 + Mod[i^2, n]]]++, {i, 0, n - 1}]; cnt = 0; Do[m = x^2 + y^2; cnt = cnt + b[[1 + Mod[m, n]]], {x, 0, n - 1}, {y, 0, n - 1}]; cnt, {k, 0, 13}]
  • PARI
    Vec(1/((4*x-1)*(8*x^2-1)) + O(x^100)) \\ Colin Barker, Oct 27 2013

Formula

a(2*k) = (2^(k+1)-1)*2^(3*k), a(2*k-1) = (2^k-1)*2^(3*k-1).
From Colin Barker, Oct 27 2013: (Start)
a(n) = 4*a(n-1) + 8*a(n-2) - 32*a(n-3).
G.f.: 1 / ((4*x-1)*(8*x^2-1)). (End)

A368197 Triangle read by rows: T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2.

Original entry on oeis.org

1, 4, 4, 18, 0, 9, 32, 8, 0, 24, 100, 0, 0, 0, 25, 72, 72, 36, 0, 0, 36, 294, 0, 0, 0, 0, 0, 49, 256, 64, 0, 96, 0, 0, 0, 96, 486, 0, 144, 0, 0, 0, 0, 0, 99, 400, 400, 0, 0, 100, 0, 0, 0, 0, 100, 1210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121
Offset: 1

Views

Author

Mats Granvik, Dec 16 2023

Keywords

Comments

Row n has sum n^3. The number of nonzero terms in row n appears to be A000005(n). It appears that Sum_{k=1..n} T(n,k)*A023900(k) = A063524(n). Main diagonal appears to be A062775. First column appears to be A053191.
It appears that when p > 2 in f(x,y,z,p) = x^p + y^p - z^p and T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z,p), n) = k], then Sum_{k=1..n} T(n,k)*A023900(k) is not equal to A063524(n). - Mats Granvik, May 07 2024

Examples

			Triangle begins:
     1;
     4,   4;
    18,   0,   9;
    32,   8,   0,  24;
   100,   0,   0,   0,  25;
    72,  72,  36,   0,   0,  36;
   294,   0,   0,   0,   0,   0,  49;
   256,  64,   0,  96,   0,   0,   0,  96;
   486,   0, 144,   0,   0,   0,   0,   0,  99;
   400, 400,   0,   0, 100,   0,   0,   0,   0, 100;
  1210,   0,   0,   0,   0,   0,   0,   0,   0,   0, 121;
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 11; p = 2; f = x^p + y^p - z^p; Flatten[Table[Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {z, 1, n}], {k, 1, n}], {n, 1, nn}]]

Formula

T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2.

A096020 Number of Pythagorean quintuples mod n; i.e., number of solutions to v^2 + w^2 + x^2 + y^2 = z^2 mod n.

Original entry on oeis.org

1, 16, 81, 192, 625, 1296, 2401, 3072, 6723, 10000, 14641, 15552, 28561, 38416, 50625, 47104, 83521, 107568, 130321, 120000, 194481, 234256, 279841, 248832, 393125, 456976, 544563, 460992, 707281, 810000, 923521, 753664
Offset: 1

Views

Author

T. D. Noe, Jun 15 2004

Keywords

Examples

			x + 16 x^2 + 81 x^3 + 192 x^4 + 625 x^5 + 1296 x^6 + 2401 x^7 + ...
		

Crossrefs

Cf. A062775 (number of solutions to x^2 + y^2 = z^2 mod n), A096018 (number of solutions to w^2 + x^2 + y^2 = z^2 mod n).

Programs

  • Mathematica
    Table[cnt=0; Do[If[Mod[v^2+w^2+x^2+y^2-z^2, n]==0, cnt++ ], {v, 0, n-1}, {w, 0, n-1}, {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 30}]
    a[ n_] := If[ n < 1, 0, Sum[ 1 - Sign[ Mod[ v^2 + w^2 + x^2 + y^2 - z^2, n]], {v, n}, {w, n}, {x, n}, {y, n}, {z, n}]]; (* Michael Somos, Jan 21 2012 *)

A331996 Number of Pythagorean triples mod n: total number of solutions (x,y,z) to x^2 + y^2 = z^2 mod n with x <= y.

Original entry on oeis.org

1, 3, 5, 14, 13, 19, 31, 52, 54, 51, 61, 110, 85, 111, 113, 232, 161, 207, 181, 302, 227, 243, 287, 436, 375, 339, 450, 614, 421, 451, 511, 912, 545, 611, 619, 1206, 685, 723, 761, 1204, 881, 895, 925, 1454, 1242, 1103, 1151, 2024, 1414, 1475, 1317, 2030, 1405
Offset: 1

Views

Author

Yinxi Pan, Feb 03 2020

Keywords

Comments

Based on A062775, but that sequence counts (x,y,z) and (y,x,z) as different pairs.

Examples

			Below is an example for n = 3 (a(3) = 5).
(0 0 0)
(1 0 1)
(1 0 2)
(2 0 1)
(2 0 2)
In contrast, A062775, counts (1 0 1) and (0 1 1), etc. as different pairs and therefore A062775(3) = 9 .
		

Crossrefs

Cf. A062775.

Programs

  • Mathematica
    a[n_] := Block[{q = Association[(#[[1]] -> #[[2]]) & /@ Tally[ Mod[ Range[ n]^2, n]]]}, Sum[ Lookup[q, Mod[x^2 + y^2, n], 0], {x,n}, {y,x}]]; Array[a, 53] (* Giovanni Resta, Feb 04 2020 *)

Extensions

More terms from Giovanni Resta, Feb 04 2020
Previous Showing 11-15 of 15 results.