A277993 Sophie Germain primes p such that p + 2 and p - 2 are semiprimes.
23, 53, 89, 113, 131, 251, 293, 491, 683, 719, 953, 1439, 1499, 1511, 1733, 2393, 3491, 3779, 5171, 7043, 7151, 7433, 7649, 7901, 8069, 8663, 9689, 10781, 12011, 12653, 13049, 13229, 13451, 13553, 14669, 15569, 16001, 16253, 18899, 19709, 20411, 22469, 22751, 23099
Offset: 1
Keywords
Examples
a(1) = 23 is Sophie Germain prime because 2*23 + 1 = 47 is prime. Also, 23 + 2 = 25 = 5*5; 23 - 2 = 21 = 7*3; are both semiprime. a(2) = 53 is Sophie Germain prime because 2*53 + 1 = 107 is prime. Also, 53 + 2 = 55 = 11*5; 23 - 2 = 51 = 17*3; are both semiprime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..4000
Programs
-
Mathematica
Select[Select[Prime[Range[10000]], PrimeQ[2 # + 1] &], PrimeOmega[# - 2] == 2 && PrimeOmega[# + 2] == 2 &] Select[Prime[Range[3000]],PrimeQ[2#+1]&&PrimeOmega[#+{2,-2}]=={2,2}&] (* Harvey P. Dale, Dec 16 2017 *)
-
PARI
is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && bigomega(n+2)==2 && bigomega(n-2)==2 \\ Felix Fröhlich, Nov 07 2016
Comments