cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A277993 Sophie Germain primes p such that p + 2 and p - 2 are semiprimes.

Original entry on oeis.org

23, 53, 89, 113, 131, 251, 293, 491, 683, 719, 953, 1439, 1499, 1511, 1733, 2393, 3491, 3779, 5171, 7043, 7151, 7433, 7649, 7901, 8069, 8663, 9689, 10781, 12011, 12653, 13049, 13229, 13451, 13553, 14669, 15569, 16001, 16253, 18899, 19709, 20411, 22469, 22751, 23099
Offset: 1

Views

Author

K. D. Bajpai, Nov 07 2016

Keywords

Comments

Intersection of A005384 and A063643.

Examples

			a(1) = 23 is Sophie Germain prime because 2*23 + 1 = 47 is prime. Also, 23 + 2 = 25 =  5*5; 23 - 2 = 21 = 7*3; are both semiprime.
a(2) = 53 is Sophie Germain prime because 2*53 + 1 = 107 is prime. Also, 53 + 2 = 55 =  11*5; 23 - 2 = 51 = 17*3; are both semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Prime[Range[10000]], PrimeQ[2 # + 1] &], PrimeOmega[# - 2] == 2 && PrimeOmega[# + 2] == 2 &]
    Select[Prime[Range[3000]],PrimeQ[2#+1]&&PrimeOmega[#+{2,-2}]=={2,2}&] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && bigomega(n+2)==2 && bigomega(n-2)==2 \\ Felix Fröhlich, Nov 07 2016

A369957 Primes p such that p - 3 and p + 3 are triprimes.

Original entry on oeis.org

47, 73, 113, 127, 151, 167, 233, 239, 241, 313, 409, 431, 433, 439, 521, 593, 599, 601, 607, 719, 727, 967, 1031, 1087, 1249, 1409, 1439, 1471, 1559, 1601, 1831, 1913, 1993, 2089, 2161, 2273, 2281, 2287, 2311, 2351, 2393, 2633, 2689, 2711, 2729, 2767, 2833, 2879, 3079, 3313, 3319, 3359, 3511
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Feb 07 2024

Keywords

Comments

Primes p such that p - 3 and p + 3 each have 3 prime factors, counted with multiplicity.
Primes p such that one of p - 3 and p + 3 is 4 times a prime and the other is 2 times a semiprime.

Examples

			a(3) = 113 is a term because 113 is prime, and 110 = 2 * 5 * 11 and 116 = 2^2 * 29 are triprimes.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)
      isprime(n) and numtheory:-bigomega(n-3) = 3 and numtheory:-bigomega(n+3) = 3
    end proc:
    select(filter, [seq(i,i=3..20000,2)]);
  • Mathematica
    s = {}; p = 5; Do[If[{3, 3} == PrimeOmega[{p - 3, p + 3}],
    AppendTo[s, p]]; p = NextPrime[p], {500}]; s
    Select[Prime[Range[500]],PrimeOmega[#-3]==PrimeOmega[#+3]==3&]

A115396 Smallest prime p such that p+-2n are semiprimes.

Original entry on oeis.org

23, 29, 71, 17, 59, 37, 71, 41, 67, 71, 43, 109, 59, 67, 173, 83, 89, 151, 103, 89, 127, 101, 131, 113, 127, 109, 131, 113, 127, 193, 157, 157, 181, 179, 229, 163, 193, 191, 211, 223, 223, 239, 241, 211, 211, 211, 271, 281, 241, 241, 263, 307, 307, 373, 293
Offset: 1

Views

Author

Zak Seidov, Mar 08 2006

Keywords

Comments

Cf. A063643 Primes p such that p+-2 are semiprimes, A117328 Primes p such that p+-4 are semiprimes.

Examples

			a(100)=571 because 571-2*100=371=7*53 (semiprime), 571+2*100=771=3*257 (semiprime).
		

Crossrefs

Cf. A063643.
Previous Showing 11-13 of 13 results.