cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A097035 Initial values for the iteration of the function f(x) = A063919(x) such that the iteration ends in a 5-cycle, i.e., in A097024.

Original entry on oeis.org

570, 870, 1230, 1290, 1326, 1482, 1530, 1686, 1698, 1710, 1794, 1866, 1878, 1890, 2058, 2070, 2142, 2154, 2166, 2178, 2238, 2250, 2502, 2802, 2814, 3042, 3222, 3630, 3702, 3714, 3726, 4350, 4494, 4506, 4518, 4914, 5010, 5142, 5154, 5166, 5284, 5418
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			n = 570: list = {570, 870, 1290, [1878, 1890, 2142, 2178, 1482], 1878}; after 3 transients, a 5-cycle arises.
n = 1230: {1230, 1794, 2238, 2250, 1530, 1710, [1890, 2142, 2178, 1482, 1878]} ; the iteration to the 5-cycle is not necessarily monotone. - _Hartmut F. W. Hoft_, Jan 25 2024
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    a097035Q[k_] := Module[{iter=NestWhileList[a063919, k, UnsameQ, All]}, Apply[Subtract, Reverse[Flatten[Position[iter, Last[iter]], 1]]]==5]
    a097035[n_] := Select[Range[n], a097035Q]
    a097035[5418] (* Hartmut F. W. Hoft, Jan 25 2024 *)

A098186 If f[x]=(sum of unitary-proper divisors of x)=A063919[x] is iterated, the iteration may lead to a fixed point which is either 0 or belongs to A002827, a unitary-perfect-number >1: 6,60,90,87360... Sequence gives initial values for which the iteration ends in 87360, the 4th unitary perfect number.

Original entry on oeis.org

87360, 232608, 356640, 465144, 527712, 565728, 713208, 1018248, 1055352, 1211352, 1240032, 1303728, 1316904, 1352568, 1357584, 1360416, 1379280, 1550472, 1690440, 1835592, 2035608, 2078328, 2110632, 2262892, 2422632
Offset: 1

Views

Author

Labos Elemer, Aug 31 2004

Keywords

Examples

			Iteration list started from n=1018248: {1018248, 1055352, 527712, 232608, 87360, 87360...}
		

Crossrefs

Programs

  • Mathematica
    di[x_] :=Divisors[x];ta={{0}}; ud[x_] :=Part[di[x], Flatten[Position[GCD[di[x], Reverse[di[x]]], 1]]]; asu[x_] :=Apply[Plus, ud[x]]-x; nsf[x_, ho_] :=NestList[asu, x, ho] Do[g=n;s=Last[NestList[asu, n, 100]];If[Equal[s, 87360], Print[{n, s}]; ta=Append[ta, n]], {n, 1, 5000000}];ta = Delete[ta, 1]

A098188 Irregular triangle with 4 columns which contains in each row the members of a 4-cycle under the map x->A063919(x), iteration of summing the proper-unitary divisors.

Original entry on oeis.org

263820, 263940, 280380, 280500, 395730, 395910, 420570, 420750, 172459210, 218725430, 272130250, 218628662, 209524210, 246667790, 231439570, 230143790, 384121920, 384296640, 408233280, 408408000
Offset: 1

Views

Author

Labos Elemer, Sep 02 2004

Keywords

Comments

Initial values attracted by this sequence are in A098187.
The iteration of this function also contains 2-cycles like 114->126->114... or 1140 -> 1260 ->1140,... or 3-cycles like 30->42->54->30->....

Examples

			The first line represents the 4-cycle  280500->263820->263940->280380->280500->...,
The second line represents the 4-cycle 420750->395730->395910->420570->420750->..
		

Crossrefs

Cf. A319902 (where the terms are entered by increasing value).

Extensions

More terms from Michel Marcus, Oct 05 2018

A098187 Initial seeds x which will enter a cycle of length 4 under the iteration of x -> A063919(x), the sum of proper unitary divisors.

Original entry on oeis.org

81570, 114270, 137046, 169998, 177906, 182082, 182094, 185190, 194574, 194586, 201642, 203442, 204420, 204540, 212466, 212874, 213870, 219306, 219318, 230874, 231438, 231834, 231846, 232626, 237678, 238134, 242634, 258882, 259338, 259350
Offset: 1

Views

Author

Labos Elemer, Sep 02 2004

Keywords

Comments

The sequence is the attractor-basin of set of {C4} cycles belonging to this iteration.
The {C4} attractor-set is displayed separately in A098188.

Examples

			81570 is in the sequence because its track under the iterated map is 81570, 114270, 182082, 182094, 232626, 237678, 305682, 352878, 360978, 403662, 420738, [420750, 395730, 395910, 420570], 420750.., where the cycle is indicated by brackets. The 4 recurrent terms appear after 11 transients for this case.
		

Crossrefs

A332974 Solutions k of the equation s(k) = s(k-1) + s(k-2) where s(k) = usigma(k) - k is the sum of proper unitary divisors of k (A063919).

Original entry on oeis.org

3, 21, 321, 1257, 3237, 146139, 268713, 584835, 26749089, 9988999095, 25997557299, 54449485353, 935628578283, 2105722150095, 3921293253003, 8234992646643
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Comments

a(17) > 10^13. - Giovanni Resta, May 09 2020

Examples

			21 is a term since s(21) = 11 and s(19) + s(20) = 1 + 10 = 11.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); s[n_] := usigma[n] - n; Select[Range[3, 6*10^5], s[#] == s[# - 1] + s[# - 2] &]

Extensions

a(12)-a(16) from Giovanni Resta, May 09 2020

A369895 Irregular triangle of iteration steps of A063919 until the end of the terminal cycle is reached, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 7, 1, 8, 1, 9, 1, 10, 8, 1, 11, 1, 12, 8, 1, 13, 1, 14, 10, 8, 1, 15, 9, 1, 16, 1, 17, 1, 18, 12, 8, 1, 19, 1, 20, 10, 8, 1, 21, 11, 1, 22, 14, 10, 8, 1, 23, 1, 24, 12, 8, 1, 25, 1, 26, 16, 1, 27, 1, 28, 12, 8, 1, 29, 1, 30, 42, 54
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 04 2024

Keywords

Examples

			The beginning of the irregular triangle showing 3 terminal cycles ( 1 ), ( 6 ) and ( 30 42 54 ):
  1
  2    1
  3    1
  4    1
  5    1
  6
  7    1
  ...
  14  10   8   1
  ...
  30  42  54
  31  1
  ...
Row 1230 contains a non-monotone iteration that ends in the 5-cycle starting at A097035(3):
1230, 1794, 2238, 2250, 1530, 1710, {1890, 2142, 2178, 1482, 1878 }.
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 1
    iter[k_] := Most[NestWhileList[a063919, k, UnsameQ, All]]
    a369895[n_] := Map[iter, Range[n]]
    a369895[30] (* irregular triangle *)
    Flatten[a369895[30]] (* sequence data *)

A034460 a(n) = usigma(n) - n, where usigma(n) = sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 12, 1, 16, 1, 12, 1, 42, 1, 1, 15, 20, 13, 14, 1, 22, 17, 14, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 30, 17, 16, 23, 32, 1, 60, 1, 34, 17, 1, 19, 78, 1, 22, 27, 74, 1, 18, 1, 40, 29, 24, 19, 90, 1, 22, 1, 44
Offset: 1

Views

Author

Keywords

Examples

			Unitary divisors of 12 are 1, 3, 4, 12. a(12) = 1 + 3 + 4 = 8.
		

Crossrefs

Cf. A063936 (squares > 1).
Cf. A063919 (essentially the same sequence).

Programs

  • Haskell
    a034460 = sum . init . a077610_row  -- Reinhard Zumkeller, Aug 15 2012
    
  • Maple
    A034460 := proc(n)
        A034448(n)-n ;
    end proc:
    seq(A034460(n),n=1..40) ; # R. J. Mathar, Nov 10 2014
  • Mathematica
    usigma[n_] := Sum[ If[GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; a[n_] := usigma[n] - n; Table[ a[n], {n, 1, 82}] (* Jean-François Alcover, May 15 2012 *)
    a[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; a[1] = 0; Array[a, 100] (* Amiram Eldar, Oct 03 2022 *)
  • PARI
    a(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n \\ Charles R Greathouse IV, Aug 01 2016

Formula

a(n) = Sum_{k = 1..A034444(n)-1} A077610(n,k). - Reinhard Zumkeller, Aug 15 2012
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) - 1)/2 = 0.1842163888... . - Amiram Eldar, Feb 22 2024

A097032 Total length of transient and terminal cycle if unitary-proper-divisor-sum function f(x) = A034460(x) is iterated and the initial value is n. Number of distinct terms in iteration list, including also the terminal 0 in the count if the iteration doesn't end in a cycle.

Original entry on oeis.org

2, 3, 3, 3, 3, 1, 3, 3, 3, 4, 3, 4, 3, 5, 4, 3, 3, 5, 3, 5, 4, 6, 3, 5, 3, 4, 3, 5, 3, 3, 3, 3, 5, 6, 4, 6, 3, 7, 4, 6, 3, 3, 3, 4, 5, 5, 3, 6, 3, 6, 5, 6, 3, 3, 4, 4, 4, 4, 3, 1, 3, 7, 4, 3, 4, 3, 3, 7, 4, 8, 3, 6, 3, 7, 4, 6, 4, 2, 3, 7, 3, 5, 3, 7, 4, 6, 6, 6, 3, 1, 5, 6, 5, 7, 4, 7, 3, 7, 5, 4, 3, 3, 3, 7, 7
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			From _Antti Karttunen_, Sep 24 2018: (Start)
For n = 1, A034460(1) = 0, thus a(1) = 1+1 = 2.
For n = 2, A034460(2) = 1, and A034460(1) = 0, so we end to the zero after a transient part of length 2, thus a(2) = 2+1 = 3.
For n = 30, A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, thus a(30) = a(42) = a(54) = 0+3 = 3, as 30, 42 and 54 are all contained in their own terminal cycle of length 3, without a preceding transient part. (End)
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6+14 = 20.
		

Crossrefs

Cf. A002827 (the positions of ones).
Cf. A318882 (sequence that implements the original definition of this sequence).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>0
    a097032[n_] := Map[Length[NestWhileList[a034460, #, UnsameQ, All]]-1&, Range[n]]
    a097032[105] (* Hartmut F. W. Hoft, Jan 24 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A097032(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(j-1), mapput(visited, n, j)); n = A034460(n); if(!n,return(j+1))); }; \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A318882(n) + (1-A318880(n)). - Antti Karttunen, Sep 23 2018

Extensions

Definition corrected (to agree with the given terms) by Antti Karttunen, Sep 23 2018, based on observations by Hartmut F. W. Hoft

A319902 Unitary sociable numbers of order 4.

Original entry on oeis.org

263820, 263940, 280380, 280500, 395730, 395910, 420570, 420750, 172459210, 209524210, 218628662, 218725430, 230143790, 231439570, 246667790, 272130250, 384121920, 384296640, 408233280, 408408000
Offset: 1

Views

Author

Michel Marcus, Oct 01 2018

Keywords

Comments

Is this a duplicate of A098188? - R. J. Mathar, Oct 04 2018
Note that the first 4 terms and the next 4 terms form two sociable groups. But then the next 8 terms belong to two distinct sociable groups, whereas in A098188 the integers are grouped by cycle.
From Hartmut F. W. Hoft, Aug 23 2023: (Start)
This sequence is A098188 in ascending order.
Among the 19 4-cycles listed in the link by J. O. M. Pedersen only four of the 6 possible patterns of relative sizes of the numbers in a cycle are realized. (End)

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A097024 (order 5), A097030 (order 14).
Cf. A090615 (least member of sociable quadruples).
Cf. A098188.

Programs

  • Mathematica
    f[n_] := f[n] = Module[{s = 0}, s = Total[Select[Divisors[n], GCD[#, n/#] == 1 &]]; Return[s - n]]; isok1[n_] := isok1[n] = Quiet[Check[f[n] == n, 0]]; isok2[n_] := isok2[n] = Quiet[Check[f[f[n]] == n, 0]]; isok4[n_] := isok4[n] = Quiet[Check[f[f[f[f[n]]]] == n, 0]]; isok[n_] := isok[n] = isok4[n] && Not[isok1[n]] && Not[isok2[n]]; Monitor[Position[Table[isok[n], {n, 1, 408408000}], True], n] (* Robert P. P. McKone, Aug 24 2023 *)
  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok4(n) = iferr(f(f(f(f(n)))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok4(n) && !isok1(n) && !isok2(n);

A098189 Sum of unitary divisors minus Euler phi: a(n) = A034448(n) - A000010(n).

Original entry on oeis.org

0, 2, 2, 3, 2, 10, 2, 5, 4, 14, 2, 16, 2, 18, 16, 9, 2, 24, 2, 22, 20, 26, 2, 28, 6, 30, 10, 28, 2, 64, 2, 17, 28, 38, 24, 38, 2, 42, 32, 38, 2, 84, 2, 40, 36, 50, 2, 52, 8, 58, 40, 46, 2, 66, 32, 48, 44, 62, 2, 104, 2, 66, 44, 33, 36, 124, 2, 58, 52, 120, 2, 66, 2, 78, 64, 64, 36, 144, 2
Offset: 1

Views

Author

Labos Elemer, Sep 03 2004

Keywords

Examples

			a(1) = 1 - 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &] - EulerPhi@ n, {n, 120}] (* Michael De Vlieger, Mar 01 2017 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - eulerphi(n); \\ Michel Marcus, Feb 25 2014
    
  • PARI
    a(n)=my(f=factor(n)); prod(k=1, #f[, 2], f[k, 1]^f[k, 2]+1) - eulerphi(f) \\ Charles R Greathouse IV, Mar 01 2017

Formula

a(n) > A063919(n) if n > 1.
a(A000040(k)) = 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/(12*zeta(3)) - 3/Pi^2 = 0.380252... . - Amiram Eldar, Aug 21 2023

Extensions

Edited by R. J. Mathar, Mar 02 2009
Previous Showing 11-20 of 35 results. Next