A217536
Square array read by antidiagonals, where the top row is the nonnegative integers and the other numbers are the sum of the neighbors in the preceding row.
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 3, 6, 10, 14, 4, 9, 18, 32, 46, 5, 12, 27, 55, 101, 147, 6, 15, 36, 81, 168, 315, 462, 7, 18, 45, 108, 244, 513, 975, 1437, 8, 21, 54, 135, 324, 736, 1564, 3001, 4438, 9, 24, 63, 162, 405, 973, 2222, 4761, 9199, 13637, 10, 27, 72, 189, 486, 1215, 2924, 6710, 14472, 28109, 41746
Offset: 0
The array starts:
0 1 2 3
1 3 6 9
4 10 18 27
14 32 55 81
-
A:= proc(n, k) option remember; `if`(k<0, 0,
`if`(n=0, k, add(A(n-1, k+i), i=-1..1)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 24 2024
A344394
a(n) = binomial(n, n/2 - 1/4 + (-1)^n/4)*hypergeom([-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8], [n/2 + 7/4 + (-1)^n/4], 4).
Original entry on oeis.org
1, 1, 2, 5, 9, 25, 44, 133, 230, 726, 1242, 4037, 6853, 22737, 38376, 129285, 217242, 740554, 1239980, 4266830, 7123765, 24701425, 41141916, 143567173, 238637282, 837212650, 1389206210, 4896136845, 8112107475, 28703894775, 47495492400, 168640510725, 278722764954
Offset: 0
-
alias(C=binomial):
a := n -> add(C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)), j = 0..n): seq(a(n), n = 0..32);
-
a[n_] := Binomial[n, n/2 - 1/4 + (-1)^n/4] Hypergeometric2F1[-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8, n/2 + 7/4 + (-1)^n/4, 4];
Table[a[n], {n, 0, 32}]
A344396
a(n) = binomial(2*n + 1, n)*hypergeom([-(n + 1)/2, -n/2], [n + 2], 4).
Original entry on oeis.org
1, 5, 25, 133, 726, 4037, 22737, 129285, 740554, 4266830, 24701425, 143567173, 837212650, 4896136845, 28703894775, 168640510725, 992671051482, 5853000551090, 34562387229046, 204368928058958, 1209916827501876, 7170955214476509, 42543879586512435, 252638095187722437
Offset: 0
-
alias(C=binomial):
a := n -> add(C(2*n + 1, j)*(C(2*n + 1 - j, j + n) - C(2*n + 1 - j, j + n + 2)), j = 0..2*n+1): seq(a(n), n=0..23);
-
a[n_] := Binomial[2 n + 1, n] Hypergeometric2F1[-(n + 1)/2, -n/2, n + 2, 4];
Table[a[n], {n, 0, 23}]
A344502
a(n) = Sum_{k=0..n} binomial(n, k)^2 * hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4).
Original entry on oeis.org
1, 2, 7, 29, 128, 587, 2759, 13190, 63844, 311948, 1535488, 7602971, 37829455, 188989166, 947399951, 4763280965, 24009574400, 121291129748, 613939110308, 3112989719080, 15809048927000, 80397234851080, 409378690617344, 2086928493438299, 10649867701045871
Offset: 0
-
a := n -> add(binomial(n, k)^2 * hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4), k = 0..n); seq(simplify(a(n)), n = 0..24);
A344506
a(n) = [x^n] 2 / (1 - 7*x + sqrt(1 - 2*x - 3*x^2)).
Original entry on oeis.org
1, 4, 17, 73, 315, 1362, 5895, 25528, 110579, 479068, 2075683, 8993897, 38971621, 168871854, 731764089, 3170939841, 13740635787, 59542470588, 258016586955, 1118069698011, 4844962624953, 20994821090790, 90977510544237, 394235745437286, 1708354520308101
Offset: 0
The Motzkin polynomials evaluated at: x = 0 (
A001006), x = 1 (
A005773), x = 2 (
A059738), x = 3 (this sequence).
-
gf := 2 / (1 - 7*x + sqrt(1 - 2*x - 3*x^2)):
ser := series(gf, x, 27): seq(coeff(ser, x, n), n=0..25);
# Or:
rgf := (3*x^2 + x)/(13*x^2 + 7*x + 1):
subsop(1 = NULL, gfun:-seriestolist(series(rgf, x, 28), 'revogf'));
-
RecurrenceTable[{a[n] == (39 (2 - n) a[n - 3] - (17 n + 5) a[n - 2] + (19 n + 10) a[n - 1])/(3 n + 3), a[0] == 1, a[1] == 4, a[2] == 17}, a, {n, 0, 26}]
-
R. = PowerSeriesRing(QQ, default_prec=25)
f = (3*x^2 + x) / (13*x^2 + 7*x + 1)
f.reverse().shift(-1).list()
A379838
Triangle read by rows: T(n,k) is the total number of humps with height k in all Motzkin paths of order n, n >= 2 and 1 <= k <= n/2.
Original entry on oeis.org
1, 3, 8, 1, 20, 5, 50, 19, 1, 126, 63, 7, 322, 196, 34, 1, 834, 588, 138, 9, 2187, 1728, 507, 53, 1, 5797, 5016, 1749, 253, 11, 15510, 14454, 5786, 1067, 76, 1, 41834, 41470, 18590, 4147, 416, 13, 113633, 118690, 58487, 15223, 1976, 103, 1, 310571, 339274, 181181, 53599, 8528, 635, 15
Offset: 2
Triangle begins:
[2] 1;
[3] 3;
[4] 8, 1;
[5] 20, 5;
[6] 50, 19, 1;
[7] 126, 63, 7;
[8] 322, 196, 34, 1;
[9] 834, 588, 138, 9;
[10] 2187, 1728, 507, 53, 1;
...
-
def A379838_triangel(dim):
M = matrix(ZZ, dim, dim)
for n in (2..dim+1):
for k in (1..math.floor(n/2)+1):
for i in range(n-2*k+1):
if ((n-i)%2)==0:
M[n-2,k-1]=M[n-2, k-1]+(4*k)/(n-i+2*k)*binomial(n,i)*binomial(n-i-1,(n-i)/2+k-1)
return M
A064191
Triangle T(n,k) (n >= 0, 0 <= k <= n) generalizing Motzkin numbers.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 9, 4, 5, 2, 1, 21, 9, 12, 5, 3, 1, 51, 21, 30, 12, 9, 3, 1, 127, 51, 76, 30, 25, 9, 4, 1, 323, 127, 196, 76, 69, 25, 14, 4, 1, 835, 323, 512, 196, 189, 69, 44, 14, 5, 1, 2188, 835, 1353, 512, 518, 189, 133, 44, 20, 5, 1, 5798, 2188, 3610, 1353
Offset: 0
Triangle begins
1;
1, 1;
2, 1, 1;
4, 2, 2, 1; ...
A171505
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A059738.
Original entry on oeis.org
1, 3, 1, 10, 6, 1, 34, 29, 9, 1, 117, 128, 57, 12, 1, 405, 538, 309, 94, 15, 1, 1407, 2192, 1533, 604, 140, 18, 1, 4899, 8740, 7179, 3453, 1040, 195, 21, 1, 17083, 34296, 32278, 18264, 6730, 1644, 259, 24, 1, 59629, 132929, 140790, 91372, 39668, 11877, 2443
Offset: 0
Triangle begins :
1 ;
3, 1 ;
10, 6, 1 ;
34, 29, 9, 1 ;
117, 128, 57, 12, 1 ; ...
A238763
A Motzkin triangle read by rows, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 0, 2, 0, 2, 0, 4, 1, 0, 5, 0, 9, 0, 3, 0, 12, 0, 21, 1, 0, 9, 0, 30, 0, 51, 0, 4, 0, 25, 0, 76, 0, 127, 1, 0, 14, 0, 69, 0, 196, 0, 323, 0, 5, 0, 44, 0, 189, 0, 512, 0, 835, 1, 0, 20, 0, 133, 0, 518, 0, 1353, 0, 2188, 0, 6, 0, 70, 0, 392, 0, 1422, 0
Offset: 0
[n\k 0 1 2 3 4 5 6 7]
[0] 1,
[1] 0, 1,
[2] 1, 0, 2,
[3] 0, 2, 0, 4,
[4] 1, 0, 5, 0, 9,
[5] 0, 3, 0, 12, 0, 21,
[6] 1, 0, 9, 0, 30, 0, 51,
[7] 0, 4, 0, 25, 0, 76, 0, 127.
-
@CachedFunction
def T(p, q):
if p == 0 and q == 0: return 1
if p < 0 or p > q: return 0
return T(p-2, q) + T(p-1, q-1) + T(p, q-2)
[[T(p, q) for p in (0..q)] for q in (0..9)]
A301475
Triangular array of polynomials related to the Motzkin triangle and to rooted polyominoes, coefficients in ascending order, read by rows, for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 4, 5, 3, 1, 5, 3, 1, 3, 1, 1, 9, 12, 9, 4, 1, 12, 9, 4, 1, 9, 4, 1, 4, 1, 1, 21, 30, 25, 14, 5, 1, 30, 25, 14, 5, 1, 25, 14, 5, 1, 14, 5, 1, 5, 1, 1, 51, 76, 69, 44, 20, 6, 1, 76, 69, 44, 20, 6, 1, 69, 44, 20, 6, 1, 44, 20, 6, 1, 20, 6, 1, 6, 1, 1
Offset: 0
Triangle of polynomials starts:
1
1 + x, 1
2 + 2 x + x^2, 2 + x, 1
4 + 5 x + 3 x^2 + x^3, 5 + 3 x^2 + x, 3 + x, 1
9 + 12 x + 9 x^2 + 4 x^3 + x^4, 12 + 9 x + 4 x^2 + x^3, 9 + 4 x + x^2, 4 + x, 1
.
Triangle of coefficients starts:
1
1, 1, 1
2, 2, 1, 2, 1, 1
4, 5, 3, 1, 5, 3, 1, 3, 1, 1
9, 12, 9, 4, 1, 12, 9, 4, 1, 9, 4, 1, 4, 1, 1
21, 30, 25, 14, 5, 1, 30, 25, 14, 5, 1, 25, 14, 5, 1, 14, 5, 1, 5, 1, 1
-
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
T := (n,k) -> binomial(n,k)*hypergeom([-k/2,1/2-k/2], [-k+n+2], 4);
P := (n,m) -> add(simplify(T(n,k)*x^(n-k-m)), k=0..n-m);
for n from 0 to 5 do seq(sort(P(n,j),x,ascending), j=0..n) od;
for n from 0 to 5 do seq(CoeffList(P(n,j)), j=0..n) od;
Comments