A180663
Mirror image of the Golden Triangle: T(n,k) = A001654(n-k) for n>=0 and 0<=k<=n.
Original entry on oeis.org
0, 1, 0, 2, 1, 0, 6, 2, 1, 0, 15, 6, 2, 1, 0, 40, 15, 6, 2, 1, 0, 104, 40, 15, 6, 2, 1, 0, 273, 104, 40, 15, 6, 2, 1, 0, 714, 273, 104, 40, 15, 6, 2, 1, 0, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0, 4895, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0
Offset: 0
The first few rows of this triangle are:
0;
1, 0;
2, 1, 0;
6, 2, 1, 0;
15, 6, 2, 1, 0;
40, 15, 6, 2, 1, 0;
The triangle sums lead to:
A064831 (Row1, Kn21, Kn22, Kn3, Ca2, Ca3, Gi2, Gi3),
A077916 (Row2),
A180664 (Kn23),
A180665 (Kn11, Kn12, Kn13, Fi1, Ze1),
A180665(2*n) (Kn4, Fi2, Ze4),
A115730(n+1) (Ca1, Ze3),
A115730(3*n+1) (Ca4, Ze2),
A180666 (Gi1),
A180666(4*n) (Gi4).
-
a180663 n k = a180663_tabl !! n !! k
a180663_row n = a180663_tabl !! n
a180663_tabl = map reverse a180662_tabl
-- Reinhard Zumkeller, Jun 08 2013
-
F:= combinat[fibonacci]:
T:= (n, k)-> F(n-k)*F(n-k+1):
seq(seq(T(n,k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012
-
Module[{nn=20,fb},fb=Times@@@Partition[Fibonacci[Range[0,(nn(nn+1))/2]],2,1];Table[ Reverse[Take[fb,n]],{n,nn}]]//Flatten (* Harvey P. Dale, Jan 30 2023 *)
Original entry on oeis.org
2, 5, 17, 45, 122, 320, 842, 2205, 5777, 15125, 39602, 103680, 271442, 710645, 1860497, 4870845, 12752042, 33385280, 87403802, 228826125, 599074577, 1568397605, 4106118242, 10749957120, 28143753122, 73681302245, 192900153617, 505019158605, 1322157322202, 3461452808000, 9062201101802, 23725150497405, 62113250390417, 162614600673845
Offset: 0
-
LinearRecurrence[{3, 0, -3, 1}, {2, 5, 17, 45}, 35] (* Paolo Xausa, Feb 22 2024 *)
A230448
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A226205(n+1), n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 1, 1, 3, 1, 2, 4, 5, 1, 3, 6, 9, 16, 1, 4, 9, 15, 25, 39, 1, 5, 13, 24, 40, 64, 105, 1, 6, 18, 37, 64, 104, 169, 272, 1, 7, 24, 55, 101, 168, 273, 441, 715, 1, 8, 31, 79, 156, 269, 441, 714, 1156, 1869, 1, 9, 39, 110, 235, 425, 710, 1155, 1870, 3025, 4896
Offset: 0
The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 1, 0
2| 1, 1, 3
3| 1, 2, 4, 5
4| 1, 3, 6, 9, 16
5| 1, 4, 9, 15, 25, 39
6| 1, 5, 13, 24, 40, 64, 105
7| 1, 6, 18, 37, 64, 104, 169, 272
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1, 0, 3, 5, 16, 39, 105, 272
1| 1, 1, 4, 9, 25, 64, 169, 441
2| 1, 2, 6, 15, 40, 104, 273, 714
3| 1, 3, 9, 24, 64, 168, 441, 1155
4| 1, 4, 13, 37, 101, 269, 710, 1865
5| 1, 5, 18, 55, 156, 425, 1135, 3000
6| 1, 6, 24, 79, 235, 660, 1795, 4795
7| 1, 7, 31, 110, 345, 1005, 2800, 7595
-
T := proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2)*combinat[fibonacci](n-1)) else procname(n-1, k-1) + procname(n-1, k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
T := proc(n, k): add(A035317(n+k-p-2, p), p=0..k) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
A214729
Member m=6 of the m-family of sums b(m,n) = Sum_{k=0..n} F(k+m)*F(k), m >= 0, n >= 0, with the Fibonacci numbers F.
Original entry on oeis.org
0, 13, 34, 102, 267, 712, 1864, 4893, 12810, 33550, 87835, 229968, 602064, 1576237, 4126642, 10803702, 28284459, 74049688, 193864600, 507544125, 1328767770, 3478759198, 9107509819, 23843770272, 62423800992, 163427632717, 427859097154, 1120149658758
Offset: 0
-
[(9*(-1)^(n+1)-20+Lucas(2*n+7))/5: n in [0..40]]; // Vincenzo Librandi, Aug 26 2017
-
With[{m = 6}, Table[Sum[Fibonacci[k + m]*Fibonacci[k], {k, 0, n}], {n, 0, 25}]] (* or *)
Table[(9 (-1)^(n + 1) - 20 + LucasL[2 n + 7])/5, {n, 0, 25}] (* Michael De Vlieger, Aug 23 2017 *)
LinearRecurrence[{3,0,-3,1},{0,13,34,102},40] (* Harvey P. Dale, Jun 13 2022 *)
-
concat(0, Vec(x*(13 - 5*x) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Aug 25 2017
-
[fibonacci(n+3)*fibonacci(n+4) - 2*(2+(-1)^n) for n in range(41)] # G. C. Greubel, Dec 31 2023
A216243
Partial sums of the squares of Lucas numbers (A000032).
Original entry on oeis.org
4, 5, 14, 30, 79, 200, 524, 1365, 3574, 9350, 24479, 64080, 167764, 439205, 1149854, 3010350, 7881199, 20633240, 54018524, 141422325, 370248454, 969323030, 2537720639, 6643838880, 17393796004, 45537549125, 119218851374, 312119004990, 817138163599, 2139295485800
Offset: 0
-
A001254 := proc(n)
A000032(n)^2 ;
end proc;
A := proc(n)
add( A001254(i),i=0..n) ;
end proc:
-
Accumulate[LucasL[Range[0,30]]^2] (* or *) LinearRecurrence[{3,0,-3,1},{4,5,14,30},30] (* Harvey P. Dale, Oct 13 2019 *)
A110032
A characteristic triangle for the Euler totient function (A000010).
Original entry on oeis.org
1, -1, 1, 1, -3, 1, 0, 5, -7, 1, -4, 22, 23, -13, 1, -64, 20, 172, 29, -19, 1, -240, -1120, -496, 354, 111, -29, 1, 2656, 1760, -4952, -1816, 1054, 239, -41, 1, 15360, 24800, -28640, -29040, 2384, 3938, 203, -49, 1, 88064, 587136, 601216, -63776, -191224, -21360, 6658, 511, -65, 1, -1714176, -4244224, 4907392
Offset: 0
Rows begin
1;
-1,1;
1,-3,1;
0,5,-7,1;
-4,22,23,-13,1;
-64,20,172,29,-19,1;
-240,-1120,-496,354,111,-29,1;
Comments