cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A304203 If n = Product (p_j^k_j) then a(n) = Product (p_j^prime(k_j)).

Original entry on oeis.org

1, 4, 9, 8, 25, 36, 49, 32, 27, 100, 121, 72, 169, 196, 225, 128, 289, 108, 361, 200, 441, 484, 529, 288, 125, 676, 243, 392, 841, 900, 961, 2048, 1089, 1156, 1225, 216, 1369, 1444, 1521, 800, 1681, 1764, 1849, 968, 675, 2116, 2209, 1152, 343, 500, 2601, 1352, 2809, 972, 3025
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2018

Keywords

Examples

			a(12) = a(2^2*3^1) = 2^prime(2)*3^prime(1) = 2^3*3^2 = 72.
		

Crossrefs

Cf. A064988 (apply prime to p), A321874 (apply prime to both p & e).

Programs

  • Maple
    a:= n-> mul(i[1]^ithprime(i[2]), i=ifactors(n)[2]):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jan 20 2021
  • Mathematica
    a[n_] := Times @@ (#[[1]]^Prime[#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 55}]
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, f[k,1]^prime(f[k,2])); \\ Michel Marcus, May 09 2018
    
  • PARI
    apply( A304203(n)=factorback((n=factor(n))[,1],apply(prime,n[,2])), [1..50]) \\ M. F. Hasler, Nov 20 2018

Formula

a(prime(i)^k) = prime(i)^prime(k).
a(A000040(k)) = A001248(k).
a(A001248(k)) = A030078(k).
a(A030078(k)) = A050997(k).
a(A002110(k)) = A061742(k).
Multiplicative with a(p^e) = p^prime(e). - M. F. Hasler, Nov 20 2018
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^prime(k)) = 1.80728269690724154161... . - Amiram Eldar, Jan 20 2024

A320105 If A001222(n) <= 2, a(n) = 1, otherwise, a(n) = Sum_{p|n} Sum_{q|n, q>=(p+[p^2 does not divide n])} a(prime(primepi(p)*primepi(q)) * (n/(p*q))), where p and q range over distinct primes dividing n. (See formula section for exact details.)

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 3, 1, 2, 2, 1, 1, 8, 1, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 11, 1, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 16, 1, 1, 2, 2, 1, 3, 1, 8, 2, 1, 1, 11, 1, 1, 1, 4, 1, 10, 1, 2, 1, 1, 1, 16, 1, 2, 2, 6, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 08 2018

Keywords

Comments

This is an auxiliary function for computing A317145 with help of A064988. Note the similarity of the formula to that of A300385, with only difference being in the value of a(1) and that here we have multiplication (*) instead of addition (+) between primepi(p) and primepi(q).
From Gus Wiseman, Oct 09 2018: (Start)
Combinatorial interpretation is: In the poset of multiset partitions ordered by refinement, number of maximal chains from the n-th multiset multisystem (A302242) to the maximal multiset partition of the same multiset, assuming n is odd. For example, the a(315) = 10 maximal chains are
{{1},{1},{2},{1,1}} < {{1},{1},{1,1,2}} < {{1},{1,1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{1},{1,1,2}} < {{1,1},{1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{2},{1,1,1}} < {{1},{1,1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{2},{1,1,1}} < {{2},{1,1,1,1}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{2},{1,1,1}} < {{1,2},{1,1,1}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{1,1},{1,2}} < {{1},{1,1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{1,1},{1,2}} < {{1,1},{1,1,2}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{1},{1,1},{1,2}} < {{1,2},{1,1,1}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{2},{1,1},{1,1}} < {{2},{1,1,1,1}} < {{1,1,1,1,2}}
{{1},{1},{2},{1,1}} < {{2},{1,1},{1,1}} < {{1,1},{1,1,2}} < {{1,1,1,1,2}}.
(End)

Crossrefs

Programs

  • PARI
    A320105(n) = if(bigomega(n)<=2,1,my(f=factor(n), u = #f~, s = 0); for(i=1,u,for(j=i+(1==f[i,2]),u, s += A320105(prime(primepi(f[i,1])*primepi(f[j,1]))*(n/(f[i,1]*f[j,1]))))); (s));
    
  • PARI
    memoA320105 = Map();
    A320105(n) = if(bigomega(n)<=2,1,if(mapisdefined(memoA320105,n), mapget(memoA320105,n), my(f=factor(n), u = #f~, s = 0); for(i=1,u,for(j=i+(1==f[i,2]),u, s += A320105(prime(primepi(f[i,1])*primepi(f[j,1]))*(n/(f[i,1]*f[j,1]))))); mapput(memoA320105,n,s); (s))); \\ Memoized version.

Formula

If A001222(n) <= 2 [when n is one, a prime or semiprime], a(n) = 1, otherwise, a(n) = Sum_{p|n} Sum_{q|n, q>=(p+[p^2 does not divide n])} a(prime(primepi(p)*primepi(q)) * (n/(p*q))), where p ranges over all distinct primes dividing n, and q also ranges over primes dividing n, but with condition that q > p if p is a unitary prime factor of n, otherwise q >= p. Here primepi = A000720.
a(A064988(n)) = A317145(n).

A328878 If n = Product (p_j^k_j) then a(n) = Product (prime(p_j)).

Original entry on oeis.org

1, 3, 5, 3, 11, 15, 17, 3, 5, 33, 31, 15, 41, 51, 55, 3, 59, 15, 67, 33, 85, 93, 83, 15, 11, 123, 5, 51, 109, 165, 127, 3, 155, 177, 187, 15, 157, 201, 205, 33, 179, 255, 191, 93, 55, 249, 211, 15, 17, 33, 295, 123, 241, 15, 341, 51, 335, 327, 277, 165, 283, 381, 85, 3, 451
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 29 2019

Keywords

Examples

			a(54) = 15 because 54 = 2 * 3^3 = prime(1) * prime(2)^3 and prime(prime(1)) * prime(prime(2)) = 3 * 5 = 15.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ithprime(i[1]), i=ifactors(n)[2]):
    seq(a(n), n=1..65);  # Alois P. Heinz, Nov 26 2024
  • Mathematica
    a[n_] := Times @@ (Prime[#[[1]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 65}]
  • PARI
    a(n)={my(f=factor(n)[,1]); prod(i=1, #f, prime(f[i]))} \\ Andrew Howroyd, Oct 29 2019

A301315 Multiplicative with a(p^e) = prime(p) ^ a(e) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 3, 5, 27, 11, 15, 17, 243, 125, 33, 31, 135, 41, 51, 55, 7625597484987, 59, 375, 67, 297, 85, 93, 83, 1215, 1331, 123, 3125, 459, 109, 165, 127, 177147, 155, 177, 187, 3375, 157, 201, 205, 2673, 179, 255, 191, 837, 1375, 249, 211, 38127987424935, 4913, 3993
Offset: 1

Views

Author

Rémy Sigrist, Mar 18 2018

Keywords

Comments

This sequence is a recursive version of A064988.
This sequence is injective (all terms are distinct).

Crossrefs

Programs

  • Mathematica
    Fold[Function[{a, n}, Append[a, Times @@ Map[Prime[#1]^a[[#2]] & @@ # &, FactorInteger@ n]]], {1}, Range[2, 50]] (* Michael De Vlieger, Mar 19 2018 *)
  • PARI
    a(n) = my (f=factor(n)); prod (i=1, #f~, prime(f[i,1])^a(f[i,2]))

Formula

A225395(a(n)) = n.
A279690(a(n)) = A279690(n).

A357853 Fully multiplicative with a(prime(k)) = A000009(k+1).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 4, 2, 5, 3, 4, 1, 6, 4, 8, 2, 6, 4, 10, 2, 4, 5, 8, 3, 12, 4, 15, 1, 8, 6, 6, 4, 18, 8, 10, 2, 22, 6, 27, 4, 8, 10, 32, 2, 9, 4, 12, 5, 38, 8, 8, 3, 16, 12, 46, 4, 54, 15, 12, 1, 10, 8, 64, 6, 20, 6, 76, 4, 89, 18, 8, 8, 12, 10
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2022

Keywords

Examples

			We have 525 = prime(2)*prime(3)*prime(3)*prime(4) so a(525) = Q(3)*Q(4)*Q(4)*Q(5) = 2*2*2*3 = 24, where Q = A000009.
		

Crossrefs

Other multiplicative sequences: A003961, A064988, A064989, A357852, A357980.
The non-strict version is A003964.
The unshifted horizontal version is A357978, non-strict A357977.
The unshifted version is A357982.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ptf[f_][n_]:=Product[f[i],{i,primeMS[n]}];
    Array[ptf[PartitionsQ[#+1]&],100]

A357984 Replace prime(k) with A000720(k) in the prime factorization of n.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 3, 0, 3, 0, 2, 0, 4, 0, 4, 0, 2, 0, 4, 0, 4, 0, 1, 0, 4, 0, 5, 0, 3, 0, 4, 0, 5, 0, 3, 0, 6, 0, 6, 0, 2, 0, 6, 0, 4, 0, 4, 0, 6, 0, 6, 0, 4, 0, 7, 0, 7, 0, 2, 0, 6, 0, 8, 0, 4, 0, 8, 0, 8, 0, 4, 0, 6, 0, 8, 0, 1, 0, 9, 0, 8, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2022

Keywords

Examples

			We have 91 = prime(4) * prime(6), so a(91) = pi(4) * pi(6) = 6.
		

Crossrefs

Other multiplicative sequences: A003961, A357852, A064988, A064989, A357983.
The version for p instead of pi is A299200, horz A357977, strict A357982.
The version for nu is A355741.
The version for bigomega is A355742.
The horizontal version is A357980.
A000040 lists the prime numbers.
A000720 is PrimePi.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@PrimePi/@primeMS[n],{n,100}]

A335403 If n = Product_{i=1..k} p_i^e_i then a(n) = Sum_{i=1..k} e_i * prime(p_i).

Original entry on oeis.org

0, 3, 5, 6, 11, 8, 17, 9, 10, 14, 31, 11, 41, 20, 16, 12, 59, 13, 67, 17, 22, 34, 83, 14, 22, 44, 15, 23, 109, 19, 127, 15, 36, 62, 28, 16, 157, 70, 46, 20, 179, 25, 191, 37, 21, 86, 211, 17, 34, 25, 64, 47, 241, 18, 42, 26, 72, 112, 277, 22, 283, 130, 27, 18
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2020

Keywords

Comments

Totally additive with a(p) = prime(p) for p prime.

Examples

			The prime factors of 18 are 2 * 3 * 3, so a(18) = prime(2) + prime(3) + prime(3) = 13.
		

Crossrefs

Partitions into prime parts are A000607.
Sum of prime factors is A001414.
Primes of prime index are A006450.
Sum of prime indices is A056239.
The multiplicative version is A064988.
Products of primes of prime index are A076610.
Numbers whose prime indices are not all prime are A330945.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n],{p_,k_}:>k*Prime[p]]],{n,30}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, prime(f[k,1])*f[k,2]); \\ Michel Marcus, Jun 07 2020

Extensions

Edited by N. J. A. Sloane, Jun 20 2020 following a suggestion from Bernard Schott.

A357981 Numbers whose prime indices have only prime numbers as their own prime indices.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 23, 25, 31, 32, 40, 44, 46, 47, 50, 55, 59, 62, 64, 80, 88, 92, 94, 97, 100, 103, 110, 115, 118, 121, 124, 125, 127, 128, 137, 155, 160, 176, 179, 184, 188, 194, 197, 200, 206, 220, 230, 233, 235, 236, 242, 248, 250, 253, 254
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Numbers whose prime indices are prime numbers are listed by A076610.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
     4: {1,1}
     5: {3}
     8: {1,1,1}
    10: {1,3}
    11: {5}
    16: {1,1,1,1}
    20: {1,1,3}
    22: {1,5}
    23: {9}
    25: {3,3}
    31: {11}
    32: {1,1,1,1,1}
		

Crossrefs

Contains all elements of A000079.
Contains all primes indexed by elements of A076610.
A000040 lists the prime numbers.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@PrimeQ/@Join@@primeMS/@primeMS[#]&]
Previous Showing 21-28 of 28 results.