A376652 Points of downward concavity in the sequence of composite numbers (A002808).
2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, 104, 114, 119, 124, 127, 132, 138, 148, 152, 163, 174, 178, 181, 187, 196, 201, 206, 212, 217, 221, 230, 243, 247, 250, 263, 268, 278, 281, 286, 293, 298, 303, 306, 311, 318, 321
Offset: 1
Keywords
Examples
The composite numbers are (A002808): 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ... with first differences (A073783): 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ... with second differences (A073445): 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ... with negative terms at (A376651): 2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Gus Wiseman, Points of downward concavity in the sequence of composite numbers.
Crossrefs
Programs
-
Maple
Comps:= remove(isprime, [seq(i,i=4..1000)]): D1:= Comps[2..-1]-Comps[1..-2]: D2:= D1[2..-1]-D1[1..-2]: select(t -> D2[t] < 0, [$1..nops(D2)]); # Robert Israel, Nov 06 2024
-
Mathematica
Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],-1]
Comments