cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A126272 a(1)=27; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+2}^{e_i+2}.

Original entry on oeis.org

27, 125, 343, 625, 1331, 42875, 2197, 3125, 2401, 166375, 4913, 214375, 6859, 274625, 456533, 15625, 12167, 300125, 24389, 831875, 753571, 614125, 29791, 1071875, 14641, 857375, 16807, 1373125, 50653, 57066625, 68921, 78125, 1685159
Offset: 1

Views

Author

Jonathan Vos Post, Mar 09 2007

Keywords

Comments

Analog of A045967 a(1)=4; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^{e_i+1}. In a sense, n is the zeroth sequence in a family of sequences, A045967 is the first sequence in a family of sequences and a(n) is the second sequence in a family of sequences.
If we had a(1) = 1 (instead of 4), then this would be multiplicative and a permutation of A353502. - Amiram Eldar, Aug 11 2022

Crossrefs

Programs

  • Maple
    A126272 := proc(n) local pf,i,p,e,resul ; if n = 1 then 27 ; else pf := ifactors(n)[2] ; resul := 1 ; for i from 1 to nops(pf) do p := op(1,op(i,pf)) ; e := op(2,op(i,pf)) ; resul := resul * nextprime(nextprime(p))^(e+2) ; od ; resul ; fi ; end: for n from 1 to 40 do printf("%d, ",A126272(n)) ; od ; # R. J. Mathar, Apr 20 2007
  • Mathematica
    f[p_, e_] := NextPrime[p, 2]^(e + 2); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Sum_{n>=1} 1/a(n) = (72/95)*A065483 - 26/27. - Amiram Eldar, Aug 11 2022

Extensions

More terms from R. J. Mathar, Apr 20 2007

A340065 Decimal expansion of the Product_{p>=2} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 8, 1, 0, 7, 8, 1, 4, 7, 6, 1, 2, 1, 5, 6, 2, 9, 5, 2, 2, 4, 3, 1, 2, 5, 9, 0, 4, 4, 8, 6, 2, 5, 1, 8, 0, 8, 9, 7, 2, 5, 0, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/(zeta(2*n))^2 = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.81(0781476121562952243125904486251808972503617945007235890014471780028943
5600578871201157742402315484804630969609261939218523878437047756874095
5137481910274963820549927641099855282199710564399421128798842257597684
51519536903039073806).

Examples

			1.8107814761215629522431259...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[5005/2764,105]][[1]]
  • PARI
    default(realprecision,105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2))

Formula

Equals 5005/2764 = 5*7*11*13/(2^2*691).
Equals Product_{n>=1} 1+A000040(n)^2/A084920(n)^2.
Equals (13/9)*A340066.
From Vaclav Kotesovec, Dec 29 2020: (Start)
Equals 3/2 * (Product_{p prime} (p^6+1)/(p^6-1)) * (Product_{p prime} (p^4+1)/(p^4-1)).
Equals 7*zeta(6)^2 / (4*zeta(12)).
Equals -7*binomial(12, 6) * Bernoulli(6)^2 / (8*Bernoulli(12)). (End)
Equals Sum_{k>=1} A005361(k)/k^2. - Amiram Eldar, Jan 23 2024

A381824 Odd cubefull numbers: odd numbers that are divisible by the cube of any of their prime factors.

Original entry on oeis.org

1, 27, 81, 125, 243, 343, 625, 729, 1331, 2187, 2197, 2401, 3125, 3375, 4913, 6561, 6859, 9261, 10125, 12167, 14641, 15625, 16807, 16875, 19683, 24389, 27783, 28561, 29791, 30375, 35937, 42875, 50625, 50653, 59049, 59319, 64827, 68921, 78125, 79507, 83349, 83521, 84375, 91125
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2025

Keywords

Comments

Numbers whose prime factorization has primes and exponents that are larger than 2 (except for 1 whose prime factorization is empty).
Numbers k such that A020639(k) >= 3 and A051904(k) >= 3.

Crossrefs

Intersection of A005408 and A036966.
Subsequences: A016755 (odd cubes), A381825 (odd cubefull exponentially odd numbers).

Programs

  • Mathematica
    Join[{1}, Select[Range[3, 10000, 2], Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    isok(k) = k == 1 || (k % 2 && vecmin(factor(k)[, 2]) > 2);

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime >= 3} (1 + 1/(p^2*(p-1))) = (4/5) * A065483 = 1.07182732285947779727... .

A340066 Decimal expansion of the Product_{p>=3} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 2, 5, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6, 3, 0, 9, 6, 9, 6, 0, 9, 2, 6, 1, 9, 3, 9, 2, 1, 8, 5, 2, 3, 8, 7, 8, 4, 3, 7, 0, 4, 7, 7, 5, 6, 8, 7, 4, 0, 9, 5, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/zeta^2(2*n) = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.25(3617945007235890014471780028943560057887120115774240231548480463096960
9261939218523878437047756874095513748191027496382054992764109985528219
9710564399421128798842257597684515195369030390738060781476121562952243
12590448625180897250).

Examples

			1.25361794500723589001447178...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[3465/2764, 105]][[1]]
  • PARI
    default(realprecision, 105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2),1,3)

Formula

Equals 3465/2764 = 3^2*5*7*11/(2^2*691).
Equals Product_{n>=2} 1+A000040(n)^2/A084920(n)^2.
Equals (9/13)*A340065.

A381314 Powerful numbers that have a single exponent in their prime factorization that equals 2.

Original entry on oeis.org

4, 9, 25, 49, 72, 108, 121, 144, 169, 200, 288, 289, 324, 361, 392, 400, 500, 529, 576, 675, 784, 800, 841, 961, 968, 972, 1125, 1152, 1323, 1352, 1369, 1372, 1568, 1600, 1681, 1849, 1936, 2025, 2209, 2304, 2312, 2500, 2704, 2809, 2888, 2916, 3087, 3136, 3200
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Number of the form A036966(m)/p, m >= 2, where p is a prime divisor of A036966(m).

Crossrefs

Programs

  • Mathematica
    With[{max = 3200}, Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], Count[FactorInteger[#][[;; , 2]], 2] == 1 &]]
  • PARI
    isok(k) = if(k == 1, 0, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> (x==2), e) == 1);

Formula

Sum_{n>=1} 1/a(n) = Sum_{p prime}((p-1)/(p^3-p^2+1)) * Product_{p prime} (1 + 1/(p^2*(p-1))) = 0.53045141423939736076... .

A340565 Decimal expansion of the Product_{lesser twin primes p == 5 (mod 6)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 5, 6, 9, 3, 2, 2, 9, 1, 4
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2021

Keywords

Comments

Lesser twin primes A001359 (with the exception of the first prime, 3) are congruent to 5 mod 6: this constant is smaller than A340576.
By extrapolating method most probably the next two decimal digits are 1.056932291(46).
The known high-precision algorithms for Euler products are based on the Dirichlet L function and the Moebius inversion formula (see Mathematica procedure of Jean-François Alcover in A175646).
The constant is between 1.056932291453... and 1.056932291494. - R. J. Mathar, Feb 14 2025

Examples

			1.0569322914...
		

Crossrefs

Extensions

One more digit confirmed by a bracketing of partial products - R. J. Mathar, Feb 14 2025
Previous Showing 11-16 of 16 results.