cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A267490 Primes whose base-8 representation is a perfect square in base 10.

Original entry on oeis.org

149, 241, 661, 1409, 2593, 3733, 6257, 7793, 15313, 23189, 25601, 26113, 30497, 34337, 44053, 49057, 78577, 92821, 95009, 108529, 115861, 132757, 162257, 178417, 183377, 223381, 235541, 242197, 266261, 327317, 345749, 426389, 525461, 693397, 719893, 729713, 805397, 814081, 903841
Offset: 1

Views

Author

Christopher Cormier, Jan 16 2016

Keywords

Comments

Subsequence of primes in A267768. - M. F. Hasler, Jan 20 2016

Examples

			a(1) = 149 because 149 is 225 in base 8, and 225 is 15^2 in base 10.
		

Crossrefs

For primes which are primes in other bases, see A235265, A235266, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924.

Programs

  • Magma
    [n:n in PrimesUpTo(1000000)| IsSquare(Seqint(Intseq(n,8)))]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[Prime@ Range[10^5], IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 8] &] (* Michael De Vlieger, Jan 16 2016 *)
  • PARI
    listp(nn) = {forprime(p=1, nn, d = digits(p, 8); pd = Pol(d); if (issquare(subst(pd, x, 10)), print1(p, ", ")););} \\ Michel Marcus, Jan 16 2016
    
  • PARI
    is(n,b=8,c=10)={issquare(subst(Pol(digits(n,b)),x,c))&&isprime(n)} \\ M. F. Hasler, Jan 20 2016
    
  • Python
    from sympy import isprime
    A267490_list = [int(s,8) for s in (str(i**2) for i in range(10**6)) if max(s) < '8' and isprime(int(s,8))] # Chai Wah Wu, Jan 20 2016
    

A235474 Primes whose base-4 representation is also the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 11, 29, 31, 41, 101, 109, 139, 149, 151, 181, 199, 229, 239, 251, 269, 271, 281, 389, 409, 491, 509, 541, 547, 661, 751, 887, 911, 947, 991, 1021, 1051, 1061, 1069, 1091, 1151, 1279, 1289, 1381, 1409, 1471, 1549, 1709, 1759, 1801, 1999
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.

Examples

			11 = 23_4 and 23_5 = 13 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235266, A235473, A152079, A235475 - A235479, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[FromDigits[IntegerDigits[#,4],5]]&] (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    is(p,b=5,c=4)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A235477 Primes whose base-2 representation also is the base-7 representation of a prime.

Original entry on oeis.org

2, 31, 47, 59, 103, 107, 173, 179, 181, 199, 211, 227, 229, 233, 367, 409, 443, 463, 487, 701, 743, 757, 823, 827, 877, 911, 919, 967, 1009, 1123, 1163, 1291, 1321, 1367, 1373, 1447, 1493, 1571, 1583, 1597, 1609, 1627, 1657, 1669, 1721, 1831, 1933, 1987
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
A subsequence of A027697, A015919, A197636 (conjectural).

Examples

			31 = 11111_2 and 11111_7 = 2801 are both prime, so 31 is a term.
		

Crossrefs

Cf. A235464A077721, A235475, A152079, A235266, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[FromDigits[IntegerDigits[#,2],7]]&] (* Harvey P. Dale, May 08 2021 *)
  • PARI
    is(p,b=7)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)

A231474 Primes whose base-3 representation is also the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 29, 31, 37, 41, 59, 67, 79, 97, 101, 109, 113, 137, 139, 149, 151, 173, 181, 193, 223, 229, 251, 269, 271, 293, 311, 331, 353, 367, 373, 379, 383, 389, 397, 401, 457, 467, 491, 503, 617, 631, 641, 647, 653, 673, 701, 773, 787, 797, 809, 829, 853, 857, 911, 929, 953, 977
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			7 = 21_3 and 21_5 = 11 are both prime, so 7 is a term.
		

Crossrefs

Cf. A235265, A235266, A235473, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@ Range@ 500, PrimeQ@ FromDigits[ IntegerDigits[#, 3], 5] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=5,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A231477 Primes whose base-3 representation is also the base-7 representation of a prime.

Original entry on oeis.org

2, 3, 23, 41, 47, 53, 61, 67, 71, 89, 113, 127, 131, 137, 191, 193, 223, 251, 269, 283, 293, 311, 353, 397, 409, 421, 443, 463, 491, 503, 509, 541, 569, 601, 613, 701, 773, 787, 983, 1013, 1031, 1091, 1117, 1213, 1223, 1429, 1499, 1543, 1549, 1579, 1619, 1621, 1697, 1699, 1733, 1873, 1933, 1949, 1951, 1973
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			23 = 212_3 and 212_7 = 107 are both prime, so 23 is a term.
		

Crossrefs

Cf. A235470, A235265, A235266, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ@FromDigits[IntegerDigits[#, 3], 7] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=7,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A235478 Primes whose base-2 representation also is the base-8 representation of a prime.

Original entry on oeis.org

7, 11, 13, 29, 37, 43, 47, 53, 61, 67, 71, 73, 107, 139, 149, 199, 211, 227, 263, 293, 307, 311, 317, 331, 347, 383, 389, 421, 461, 467, 541, 593, 601, 619, 641, 643, 739, 811, 863, 907, 937, 1061, 1069, 1093, 1117, 1163, 1223, 1283, 1301, 1319, 1321, 1409, 1433, 1439, 1489, 1499, 1523, 1559, 1619, 1697, 1811, 1861, 1879
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
Appears to be a subsequence of A050150, A062090 and A216285.

Examples

			11 = 1011_2 and 1011_8 = 521 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235465A077722, A235266, A152079, A235475 - A235479, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[FromDigits[IntegerDigits[#,2],8]]&] (* Harvey P. Dale, Sep 25 2015 *)
  • PARI
    is(p,b=8)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)

A235481 Primes whose base-4 representation is also the base-9 representation of a prime.

Original entry on oeis.org

2, 3, 29, 41, 61, 89, 109, 149, 157, 281, 293, 313, 401, 421, 433, 593, 701, 709, 1013, 1049, 1061, 1069, 1097, 1117, 1277, 1289, 1301, 1553, 1601, 1709, 2069, 2137, 2237, 2309, 2377, 2437, 2477, 2689, 2729, 2749, 2797, 2957, 2969, 3001, 3061, 3109, 3169, 3329, 3361, 3389, 3457, 3533, 3701
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
Appears to be a subsequence of A197636.

Examples

			29 = 131_4 and 131_9 = 109 are both prime, so 29 is a term.
		

Crossrefs

Cf. A235473 - A235480, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@600, PrimeQ[FromDigits[IntegerDigits[#, 4], 9]] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=9,c=4)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: Code only valid for b > c.

A267764 Numbers whose base-4 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 16, 25, 256, 289, 400, 441, 673, 1761, 1849, 4096, 4225, 4624, 4761, 6400, 6561, 7056, 7713, 10768, 13401, 28176, 29584, 65536, 66049, 67600, 68121, 73984, 74529, 76176, 76729, 77985, 102400, 103041, 104976, 112896, 113569, 123408, 150081, 172288, 214416, 450816, 473344, 501433, 519873
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 16, since 16^k = 100..00_4 = 10^(2k) when read as a base-10 number. Moreover, for any a(n) in the sequence, 16*a(n) is also in the sequence. One could call "primitive" the terms not of this form, these would be 1, 25 = 121_4, 289 = 10201_4, 441 = 12321_4, 673 = 22201_4, 1761 = 123201_4, ... These primitive terms include the subsequence 16^k + 2*4^k + 1 = (4^k+1)^2, k > 0, which yields A033934 when written in base 4.

Crossrefs

Cf. A267763 - A267769 for bases 3 through 9. The base-2 analog is A000302 = powers of 4.

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[Sqrt[FromDigits[IntegerDigits[#, 4]]]] &] (* Alonso del Arte, Jan 23 2016 *)
  • PARI
    is(n,b=4,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267764_list = [int(d,4) for d in (str(i**2) for i in range(10**6)) if max(d) < '4'] # Chai Wah Wu, Feb 23 2016

A267768 Numbers whose base-8 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 4, 14, 21, 30, 52, 64, 81, 100, 149, 174, 212, 241, 256, 289, 382, 405, 446, 532, 622, 661, 804, 849, 896, 1012, 1045, 1102, 1220, 1281, 1344, 1409, 1476, 1557, 1630, 1780, 1920, 2001, 2197, 2286, 2452, 2545, 2593, 2878, 2965, 3070, 3233, 3328, 3441, 3540, 3630, 3733, 4068, 4096
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 64, since 64^k = 100..00_8 = 10^(2k) when read in base 10. Moreover, for any a(n) in the sequence, 64*a(n) is also in the sequence. One could call "primitive" the terms not of this form. These primitive terms include the subsequence 64^k + 2*8^k + 1 = (8^k+1)^2, k > 0, which yields A033934 when written in base 8.
Motivated by the subsequence A267490 which lists the primes in this sequence.

Crossrefs

Cf. A267763 - A267769 for bases 3 through 9. The base-2 analog is A000302 = powers of 4.

Programs

  • Magma
    [n: n in [0..10^4] | IsSquare(Seqint(Intseq(n, 8)))]; // Vincenzo Librandi, Dec 28 2016
  • Mathematica
    Select[Range[0, 2 10^4], IntegerQ@Sqrt@FromDigits@IntegerDigits[#, 8] &] (* Vincenzo Librandi, Dec 28 2016 *)
  • PARI
    is(n,b=8,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267768_list = [int(s, 8) for s in (str(i**2) for i in range(10**6)) if max(s) < '8'] # Chai Wah Wu, Jan 20 2016
    

A231478 Primes whose base-3 representation is also the base-8 representation of a prime.

Original entry on oeis.org

2, 7, 13, 31, 37, 43, 67, 73, 97, 193, 283, 307, 379, 457, 487, 499, 577, 619, 643, 727, 733, 757, 829, 1297, 1321, 1429, 1447, 1609, 1669, 1693, 2011, 2083, 2137, 2251, 2269, 2347, 2539, 2803, 2857, 2953, 2971
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			13 = 111_3 and 111_8 = 73 are both prime, so 13 is a term.
		

Crossrefs

Cf. A235471, A235265, A235266, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ@FromDigits[IntegerDigits[#, 3], 8] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=8,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.
Previous Showing 11-20 of 40 results. Next