cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A131779 Triangle read by rows: T(n,k) = 2*A065941(n-1,k-1) - (-1)^(n+k).

Original entry on oeis.org

1, 3, 1, 1, 3, 1, 3, 1, 5, 1, 1, 3, 5, 5, 1, 3, 1, 9, 5, 7, 1, 1, 3, 9, 9, 11, 7, 1, 3, 1, 13, 9, 21, 11, 9, 1, 1, 3, 13, 13, 29, 21, 19, 9, 1, 3, 1, 17, 13, 43, 29, 41, 19, 11, 1, 1, 3, 17, 17, 55, 43, 69, 41, 29, 11, 1, 3, 1, 21, 17, 73, 55, 113, 69, 71, 29, 13, 1
Offset: 1

Views

Author

Gary W. Adamson, Jul 14 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  3, 1;
  1, 3, 1;
  3, 1, 5, 1;
  1, 3, 5, 5, 1;
  3, 1, 9, 5, 7, 1;
  1, 3, 9, 9, 11, 7, 1;
  ...
		

Crossrefs

Row sums are A131780.
Cf. A065941.

Programs

  • PARI
    T(n,k) = {if(k<=n, 2*binomial(n-1-k\2, (k-1)\2) - (-1)^(n+k), 0)} \\ Andrew Howroyd, Sep 08 2018

Formula

T(n,k) = 2*binomial(n-1-floor(k/2), floor((k-1)/2)) - (-1)^(n+k). - Andrew Howroyd, Sep 08 2018

Extensions

a(28)-a(29) corrected and terms a(56) and beyond from Andrew Howroyd, Sep 08 2018

A131376 Triangle read by rows: T(n,k) = A007318(n,k) + A065941(n,k) - A168561(n,k).

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 2, 5, 1, 1, 5, 6, 6, 1, 2, 3, 14, 9, 8, 1, 1, 7, 14, 24, 16, 9, 1, 2, 4, 27, 30, 45, 21, 11, 1, 1, 9, 25, 62, 70, 66, 31, 12, 1, 2, 5, 44, 71, 147, 120, 104, 38, 14, 1, 1, 11, 39, 128, 203, 273, 217, 140, 51, 15, 1, 2, 6, 65, 139, 366, 434, 518, 329, 200, 60, 17, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 04 2007

Keywords

Comments

The old definition was: A007318 + A065941 - A049310. - N. J. A. Sloane, Aug 09 2019
Row sums = A117591: (1, 3, 5, 10, 19, 37, 72, ...).

Examples

			First few rows of the triangle are:
  1;
  2, 1;
  1, 3, 1;
  2, 2, 5, 1;
  1, 5, 6, 6, 1;
  2, 3, 14, 9, 8, 1;
  1, 7, 14, 24, 16, 9, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n, k] + Binomial[n - Floor[(k+1)/2], Floor[k/2]] - If[EvenQ[n+k], Binomial[(n+k)/2, k], 0], {n, 0, 11}, {k, 0, n}] // Flatten  (* Amiram Eldar, May 31 2025 *)

Extensions

The old definition of A131376 did not match its data, as Michel Marcus pointed out. The definition has been corrected here, keeping the data. The old definition with corrected data is now A309213. - N. J. A. Sloane, Aug 09 2019
More terms from Amiram Eldar, May 31 2025

A131913 Product of the square matrix in A065941 and the column vector (1, 2, 3, ...)'.

Original entry on oeis.org

1, 3, 6, 13, 25, 48, 89, 163, 294, 525, 929, 1632, 2849, 4947, 8550, 14717, 25241, 43152, 73561, 125075, 212166, 359133, 606721, 1023168, 1722625, 2895843, 4861254, 8149933, 13646809, 22825200, 38136089, 63653827, 106146534, 176849517, 294401825, 489706272
Offset: 0

Views

Author

Gary W. Adamson, Jul 27 2007

Keywords

Examples

			a(4) = 25 = (1, 1, 3, 2, 1) dot (1, 2, 3, 4, 5) = (1 + 2 + 9 + 8 + 5), where (1, 1, 3, 2, 1) = row 4 of triangle A065941.
a(4) = 25 = A010049(4) + A001629(6) = 5 + 20.
a(5) = 48 = A055244(6) + A001629(4) = 43 + 5.
		

Crossrefs

Formula

a(n) = A010049(n) + A001629(n+2) = A055244(n+1) + A001629(n-1).
From Philippe Deléham, Dec 28 2013: (Start)
G.f.: (1+x-x^2)/(1-x-x^2)^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), a(0)=1, a(1)=3, a(2)=6, a(3)=13.
a(n) = a(n-1) + a(n-2) + 2*Fibonacci(n). (End)

A309213 A007318 + A065941 - A049310.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 2, 6, 5, 1, 1, 5, 12, 6, 1, 2, 3, 14, 17, 8, 1, 3, 7, 14, 24, 26, 9, 1, 2, 12, 27, 30, 45, 33, 11, 1, 1, 9, 45, 62, 70, 66, 45, 12, 1, 2, 5, 44, 111, 147, 120, 104, 54, 14, 1, 3, 11, 39, 128, 273, 273, 217, 140, 69, 15, 1, 2, 18, 65, 139, 366, 546, 518, 329, 200, 80, 17, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 04 2007

Keywords

Comments

Row sums = 1, 3, 7, 14, 25, 45, 85, ... (This is probably a new sequence and should be added to the OEIS.) - N. J. A. Sloane, Aug 09 2019

Examples

			First few rows of the triangle are:
1,
2, 1,
3, 3, 1,
2, 6, 5, 1,
1, 5, 12, 6, 1,
2, 3, 14, 17, 8, 1,
3, 7, 14, 24, 26, 9, 1,
...
		

Crossrefs

Programs

  • PARI
    T007318(n, k) = binomial(n, k);
    T065941(n, k) = binomial(n - (k+1)\2, k\2);
    T049310(n, k) = if ((n+k)%2, 0, (-1)^((n+k)/2 + k) * binomial((n+k)/2, k));
    T(n, k) = T007318(n, k) + T065941(n, k) - T049310(n, k); \\ Michel Marcus, Apr 28 2014

Formula

A007318 + A065941 - A168561 as infinite lower triangular matrices.

Extensions

The old definition of A131376 did not match the data, as Michel Marcus pointed out. The definition there has been corrected, keeping the old data. The present sequence uses the old definition with corrected data from Michel Marcus. - N. J. A. Sloane, Aug 09 2019
More terms from Jinyuan Wang, Aug 29 2019

A131344 A046854 * A065941.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 8, 7, 8, 3, 1, 13, 12, 18, 9, 4, 1, 21, 20, 38, 21, 14, 4, 1, 34, 33, 76, 47, 39, 15, 5, 1, 55, 54, 147, 97, 100, 43, 21, 5, 1, 89, 88, 277, 194, 236, 115, 69, 22, 6, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 30 2007

Keywords

Comments

Left border = Fibonacci numbers starting with F(2). Row sums = A131246: (1, 3, 6, 13, 27, 57,...). A131345 = A065941 * A046854.

Examples

			First few rows of the triangle are:
1;
2, 1;
3, 2, 1;
5, 4, 3, 1;
8, 7, 8, 3, 1;
13, 12, 18, 9, 4, 1;
...
		

Crossrefs

Formula

A046854 * A065941 as infinite lower triangular matrices.

A131345 Triangle read by rows: A065941 * A046854 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 5, 3, 1, 8, 10, 8, 3, 1, 13, 20, 19, 10, 4, 1, 21, 38, 42, 26, 14, 4, 1, 34, 71, 89, 65, 41, 16, 5, 1, 55, 130, 182, 151, 110, 50, 21, 5, 1, 89, 235, 363, 338, 276, 146, 72, 23, 6, 1, 144, 420, 709, 730, 659, 392, 223, 83, 29, 6, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 30 2007

Keywords

Comments

Left border = Fibonacci numbers starting with F(2). Row sums = A131244: (1, 3, 6, 14, 30, 67, 146,...). A131344 = A046854 * A065941.

Examples

			First few rows of the triangle are:
1;
2, 1;
3, 2, 1;
5, 5, 3, 1;
8, 10, 8, 3, 1;
13, 20, 19, 10, 4, 1;
21, 38, 42, 26, 14, 4, 1;
...
		

Crossrefs

Formula

A065941 * A046854 as infinite lower triangular matrics.

Extensions

a(49) split and more terms from Georg Fischer, May 29 2023

A131400 A046854 + A065941 - I (Identity matrix).

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 3, 6, 3, 1, 2, 4, 7, 7, 4, 1, 2, 4, 11, 8, 11, 4, 1, 2, 5, 12, 15, 15, 12, 5, 1, 2, 5, 17, 16, 30, 16, 17, 5, 1, 2, 6, 18, 27, 36, 36, 27, 18, 6, 1, 2, 6, 24, 28, 63, 42, 63, 28, 24, 6, 1, 2, 7, 25, 44, 71, 84, 84, 71, 44, 25, 7, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 06 2007

Keywords

Comments

Row sums = A001595: (1, 3, 5, 9, 15, 25, 41, 67,...).

Examples

			First few rows of the triangle are:
  1;
  2, 1;
  2, 2,  1;
  2, 3,  3, 1;
  2, 3,  6, 3,  1;
  2, 4,  7, 7,  4, 1;
  2, 4, 11, 8, 11, 4, 1; ...
		

Crossrefs

Programs

  • GAP
    B:=Binomial;;
    T:= function(n,k)
        if k=n then return 1;
        else return B(Int((n+k)/2), k) + B(n - Int((k+1)/2), Int(k/2));
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 13 2019
  • Magma
    B:=Binomial; [k eq n select 1 else B(Floor((n+k)/2), k) + B(n - Floor((k+1)/2), Floor(k/2)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 13 2019
    
  • Mathematica
    With[{B = Binomial}, Table[If[k==n, 1, B[Floor[(n+k)/2], k] + B[n - Floor[(k+1)/2], Floor[k/2]]], {n,0,12}, {k,0,n}]]//Flatten (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    b=binomial; T(n,k) = if(k==n, 1, b((n+k)\2, k) + b(n - (k+1)\2, k\2));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", ", ))) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    def T(n, k):
        b=binomial;
        if (k==n): return 1
        else: return b(floor((n+k)/2), k) + b(n - floor((k+1)/2), floor(k/2))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 13 2019
    

Extensions

More terms added by G. C. Greubel, Jul 13 2019

A131767 2*A007318 - A065941.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 7, 9, 6, 1, 1, 9, 16, 17, 7, 1, 1, 11, 25, 36, 24, 9, 1, 1, 13, 36, 65, 60, 36, 10, 1, 1, 15, 49, 106, 125, 102, 46, 12, 1, 1, 17, 64, 161, 231, 237, 148, 62, 13, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 13 2007

Keywords

Examples

			First few rows of the triangle are:
1;
1, 1;
1, 3, 1;
1, 5, 4, 1;
1, 7, 9, 6, 1;
1, 9, 16, 17, 7, 1;
1, 11, 25, 36, 24, 9, 1;
...
		

Crossrefs

Cf. A007318, A065941, A027934 (row sums).

Formula

2*A007318 - A065941 as infinite lower triangular matrices.

A153341 Triangle read by rows, A065941 * A007318.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 5, 8, 5, 1, 8, 17, 15, 6, 1, 13, 35, 41, 25, 8, 1, 21, 68, 98, 78, 36, 9, 1, 34, 129, 222, 220, 135, 51, 11, 1, 55, 239, 477, 562, 425, 210, 66, 12, 1, 89, 436, 991, 1355, 1222, 751, 314, 86, 14, 1, 144, 785, 2001, 3110, 3248, 2373, 1225, 440, 105, 15, 1, 233, 1399, 3953, 6883, 8171, 6923, 4263, 1905, 605, 130, 17, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 24 2008

Keywords

Comments

Row sums = A026581: (1, 3, 7, 19, 47, 123,...)

Examples

			First few rows of the triangle =
1;
2, 1;
3, 3, 1;
5, 8, 5, 1;
8, 17, 15, 6, 1;
13, 35, 41, 25, 8, 1;
21, 68, 98, 78, 36, 9, 1;
34, 129, 222, 220, 135, 51, 11, 1;
55, 239, 477, 562, 425, 210, 66, 12, 1;
89, 436, 991, 1355, 1222, 751, 314, 86, 14, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A065941 * Pascal's triangle.

Extensions

a(37) = 239 corrected and more terms from Georg Fischer, May 29 2023

A131373 A046854 + A065941 - A000012.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 6, 6, 3, 1, 1, 3, 10, 7, 10, 3, 1, 1, 4, 11, 14, 14, 11, 4, 1, 1, 4, 16, 15, 29, 15, 16, 4, 1, 1, 5, 17, 26, 35, 35, 26, 17, 5, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 03 2007

Keywords

Comments

Row sums = A131269: (1, 2, 3, 6, 11, 20, 35, 60,...).

Examples

			First few rows of the triangle are:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 5, 2, 1;
1, 3, 6, 6, 3, 1;
1, 3, 10, 7, 10, 3, 1;
1, 4, 11, 14, 14, 11, 4, 1;
1, 4, 16, 15, 29, 15, 16, 4, 1;
...
		

Crossrefs

Formula

A046854 + A065941 - A000012 as infinite lower triangular matrices.
Previous Showing 11-20 of 73 results. Next