cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A351304 a(n) = n^9 * Product_{p|n, p prime} (1 + 1/p^9).

Original entry on oeis.org

1, 513, 19684, 262656, 1953126, 10097892, 40353608, 134479872, 387440172, 1001953638, 2357947692, 5170120704, 10604499374, 20701400904, 38445332184, 68853694464, 118587876498, 198756808236, 322687697780, 513000262656, 794320419872, 1209627165996, 1801152661464, 2647101800448
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 9th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), this sequence (k=9), A351305 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(9*e) + p^(9*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^9);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^9*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A351304(n): return prod(p**(9*e)+p**(9*(e-1)) for p,e in factorint(n).items()) # Chai Wah Wu, Sep 28 2024

Formula

a(n) = Sum_{d|n} d^9 * mu(n/d)^2.
a(n) = n^9 * Sum_{d|n} mu(d)^2 / d^9.
Multiplicative with a(p^e) = p^(9*e) + p^(9*e-9). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-9)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^10 * zeta(10) / (10 * zeta(20)) = 3273645375 * n^10 / (349222 * Pi^10).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^9/(p^18-1)) = 1.002004575331916689985388864168116922608947780516939765639888137700557... (End)

A351305 a(n) = n^10 * Product_{p|n, p prime} (1 + 1/p^10).

Original entry on oeis.org

1, 1025, 59050, 1049600, 9765626, 60526250, 282475250, 1074790400, 3486843450, 10009766650, 25937424602, 61978880000, 137858491850, 289537131250, 576660215300, 1100585369600, 2015993900450, 3574014536250, 6131066257802, 10250001049600, 16680163512500, 26585860217050
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Sum of the 10th powers of the divisor complements of the squarefree divisors of n.

Crossrefs

Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), this sequence (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^(10*e) + p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    a(n)=sumdiv(n, d, moebius(n/d)^2*d^10);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^10*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022

Formula

a(n) = Sum_{d|n} d^10 * mu(n/d)^2.
a(n) = n^10 * Sum_{d|n} mu(d)^2 / d^10.
Multiplicative with a(p^e) = p^(10*e) + p^(10*e-10). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-10)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^11 * zeta(11) / (11 * zeta(22)) = 1222532449149375 * n^11 * zeta(11) / (155366 * Pi^22).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^10/(p^20-1)) = 1.000993621149252443797467720671490169127513829380371486971107300011796... (End)

A194532 Jordan function ratio J_6(n)/J_2(n).

Original entry on oeis.org

1, 21, 91, 336, 651, 1911, 2451, 5376, 7371, 13671, 14763, 30576, 28731, 51471, 59241, 86016, 83811, 154791, 130683, 218736, 223041, 310023, 280371, 489216, 406875, 603351, 597051, 823536, 708123, 1244061, 924483, 1376256, 1343433, 1760031, 1595601, 2476656, 1875531, 2744343
Offset: 1

Views

Author

R. J. Mathar, Aug 28 2011

Keywords

Comments

Dirichlet convolution of A000583 with the multiplicative function which starts 1, 5, 10, 0, 26, 50, 50, 0, 0, 130, 122, 0, 170, 250, 260, 0, 290,..

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
         mul(t[1]^(4*(t[2]-1))*((t[1]^2+1)^2-t[1]^2),t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 14 2016
  • Mathematica
    JordanTotient[n_, k_: 1] := DivisorSum[n, #^k MoebiusMu[n/#] &] /; (n > 0) && IntegerQ@ n; Table[JordanTotient[n, 6]/JordanTotient[n, 2], {n, 12}] (* Michael De Vlieger, Jun 14 2016, after Enrique Pérez Herrero at A065959 *)
    f[p_, e_] := p^(4*(e-1))*(p^2+p+1)*(p^2-p+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(4*(f[i,2]-1))*(f[i,1]^2+f[i,1]+1)*(f[i,1]^2-f[i,1]+1));} \\ Amiram Eldar, Nov 05 2022

Formula

a(n) = A069091(n)/A007434(n).
Multiplicative with a(p^e) = p^(4*(e-1))*(p^2+p+1)*(p^2-p+1), e>0.
Dirichlet g.f.: zeta(s-4)*product_{primes p} (1+p^(2-s)+p^(-s)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = Product_{primes p} (1 + 1/p^3 + 1/p^5) = 1.2196771388395597011492820972459808778277319864216893177353903924... - Vaclav Kotesovec, Dec 18 2019
Sum_{n>=1} 1/a(n) = (Pi^8/14175) * Product_{p prime} (1 + 1/p^2 + 1/p^4 - 1/p^6 - 1/p^8) = 1.06469274411... . - Amiram Eldar, Nov 05 2022

A328640 Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-3)).

Original entry on oeis.org

1, -9, -28, 9, -126, 252, -344, -9, 28, 1134, -1332, -252, -2198, 3096, 3528, 9, -4914, -252, -6860, -1134, 9632, 11988, -12168, 252, 126, 19782, -28, -3096, -24390, -31752, -29792, -9, 37296, 44226, 43344, 252, -50654, 61740, 61544, 1134, -68922, -86688, -79508, -11988, -3528
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A065959.

Crossrefs

Cf. A008683, A008836, A026424 (positions of negative terms), A063453, A065959, A323363, A328639.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^3, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 45}]
    Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^3 &], {n, 1, 45}]
    f[p_, e_] := (-1)^e*(p^3+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
  • PARI
    a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^3)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA065959(n/d) * a(d).
a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^3, where lambda = A008836 and mu = A008683.
Multiplicative with a(p^) = (-1)^e*(p^3+1). - Amiram Eldar, Dec 03 2022

A320974 a(n) = n^n * Product_{p|n, p prime} (1 + 1/p^n).

Original entry on oeis.org

1, 5, 28, 272, 3126, 47450, 823544, 16842752, 387440172, 10009766650, 285311670612, 8918294011904, 302875106592254, 11112685048647250, 437893920912786408, 18447025548686262272, 827240261886336764178, 39346558271492178663450, 1978419655660313589123980
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 25 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^n Product[1 + Boole[PrimeQ[d]]/d^n, {d, Divisors[n]}], {n, 19}]
    Table[SeriesCoefficient[Sum[MoebiusMu[k]^2 PolyLog[-n, x^k], {k, 1, n}], {x, 0, n}], {n, 19}]
    Table[Sum[MoebiusMu[n/d]^2 d^n, {d, Divisors[n]}], {n, 19}]

Formula

a(n) = [x^n] Sum_{k>=1} mu(k)^2*PolyLog(-n,x^k), where PolyLog() is the polylogarithm function.
a(n) = Sum_{d|n} mu(n/d)^2*d^n.
a(n) = A320973(n,n).

A320973 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = n^k * Product_{p|n, p prime} (1 + 1/p^k).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 9, 10, 6, 2, 1, 17, 28, 20, 6, 4, 1, 33, 82, 72, 26, 12, 2, 1, 65, 244, 272, 126, 50, 8, 2, 1, 129, 730, 1056, 626, 252, 50, 12, 2, 1, 257, 2188, 4160, 3126, 1394, 344, 80, 12, 4, 1, 513, 6562, 16512, 15626, 8052, 2402, 576, 90, 18, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 25 2018

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,     1,     1,  ...
  2,   3,   5,    9,    17,    33,  ...
  2,   4,  10,   28,    82,   244,  ...
  2,   6,  20,   72,   272,  1056,  ...
  2,   6,  26,  126,   626,  3126,  ...
  4,  12,  50,  252,  1394,  8052,  ...
		

Crossrefs

Columns k=0..4 give A034444, A001615, A065958, A065959, A065960.
Cf. A008683, A059379, A059380, A320974 (diagonal).

Programs

  • Mathematica
    Table[Function[k, n^k Product[1 + Boole[PrimeQ[d]]/d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j]^2 PolyLog[-k, x^j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, Sum[MoebiusMu[n/d]^2 d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} mu(j)^2*PolyLog(-k,x^j), where PolyLog() is the polylogarithm function.
A(n,k) = Sum_{d|n} mu(n/d)^2*d^k.
Previous Showing 11-16 of 16 results.