A351304
a(n) = n^9 * Product_{p|n, p prime} (1 + 1/p^9).
Original entry on oeis.org
1, 513, 19684, 262656, 1953126, 10097892, 40353608, 134479872, 387440172, 1001953638, 2357947692, 5170120704, 10604499374, 20701400904, 38445332184, 68853694464, 118587876498, 198756808236, 322687697780, 513000262656, 794320419872, 1209627165996, 1801152661464, 2647101800448
Offset: 1
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10:
A034444 (k=0),
A001615 (k=1),
A065958 (k=2),
A065959 (k=3),
A065960 (k=4),
A351300 (k=5),
A351301 (k=6),
A351302 (k=7),
A351303 (k=8), this sequence (k=9),
A351305 (k=10).
-
f[p_, e_] := p^(9*e) + p^(9*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Feb 08 2022 *)
-
a(n)=sumdiv(n, d, moebius(n/d)^2*d^9);
-
for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^9*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
-
from math import prod
from sympy import factorint
def A351304(n): return prod(p**(9*e)+p**(9*(e-1)) for p,e in factorint(n).items()) # Chai Wah Wu, Sep 28 2024
A351305
a(n) = n^10 * Product_{p|n, p prime} (1 + 1/p^10).
Original entry on oeis.org
1, 1025, 59050, 1049600, 9765626, 60526250, 282475250, 1074790400, 3486843450, 10009766650, 25937424602, 61978880000, 137858491850, 289537131250, 576660215300, 1100585369600, 2015993900450, 3574014536250, 6131066257802, 10250001049600, 16680163512500, 26585860217050
Offset: 1
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10:
A034444 (k=0),
A001615 (k=1),
A065958 (k=2),
A065959 (k=3),
A065960 (k=4),
A351300 (k=5),
A351301 (k=6),
A351302 (k=7),
A351303 (k=8),
A351304 (k=9), this sequence (k=10).
-
f[p_, e_] := p^(10*e) + p^(10*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Feb 08 2022 *)
-
a(n)=sumdiv(n, d, moebius(n/d)^2*d^10);
-
for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^10*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
A194532
Jordan function ratio J_6(n)/J_2(n).
Original entry on oeis.org
1, 21, 91, 336, 651, 1911, 2451, 5376, 7371, 13671, 14763, 30576, 28731, 51471, 59241, 86016, 83811, 154791, 130683, 218736, 223041, 310023, 280371, 489216, 406875, 603351, 597051, 823536, 708123, 1244061, 924483, 1376256, 1343433, 1760031, 1595601, 2476656, 1875531, 2744343
Offset: 1
-
f:= proc(n) local t;
mul(t[1]^(4*(t[2]-1))*((t[1]^2+1)^2-t[1]^2),t=ifactors(n)[2])
end proc:
map(f, [$1..100]); # Robert Israel, Jun 14 2016
-
JordanTotient[n_, k_: 1] := DivisorSum[n, #^k MoebiusMu[n/#] &] /; (n > 0) && IntegerQ@ n; Table[JordanTotient[n, 6]/JordanTotient[n, 2], {n, 12}] (* Michael De Vlieger, Jun 14 2016, after Enrique Pérez Herrero at A065959 *)
f[p_, e_] := p^(4*(e-1))*(p^2+p+1)*(p^2-p+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(4*(f[i,2]-1))*(f[i,1]^2+f[i,1]+1)*(f[i,1]^2-f[i,1]+1));} \\ Amiram Eldar, Nov 05 2022
A328640
Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-3)).
Original entry on oeis.org
1, -9, -28, 9, -126, 252, -344, -9, 28, 1134, -1332, -252, -2198, 3096, 3528, 9, -4914, -252, -6860, -1134, 9632, 11988, -12168, 252, 126, 19782, -28, -3096, -24390, -31752, -29792, -9, 37296, 44226, 43344, 252, -50654, 61740, 61544, 1134, -68922, -86688, -79508, -11988, -3528
Offset: 1
-
a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^3, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 45}]
Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^3 &], {n, 1, 45}]
f[p_, e_] := (-1)^e*(p^3+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
-
a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^3)} \\ Andrew Howroyd, Oct 25 2019
A320974
a(n) = n^n * Product_{p|n, p prime} (1 + 1/p^n).
Original entry on oeis.org
1, 5, 28, 272, 3126, 47450, 823544, 16842752, 387440172, 10009766650, 285311670612, 8918294011904, 302875106592254, 11112685048647250, 437893920912786408, 18447025548686262272, 827240261886336764178, 39346558271492178663450, 1978419655660313589123980
Offset: 1
-
Table[n^n Product[1 + Boole[PrimeQ[d]]/d^n, {d, Divisors[n]}], {n, 19}]
Table[SeriesCoefficient[Sum[MoebiusMu[k]^2 PolyLog[-n, x^k], {k, 1, n}], {x, 0, n}], {n, 19}]
Table[Sum[MoebiusMu[n/d]^2 d^n, {d, Divisors[n]}], {n, 19}]
A320973
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = n^k * Product_{p|n, p prime} (1 + 1/p^k).
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 9, 10, 6, 2, 1, 17, 28, 20, 6, 4, 1, 33, 82, 72, 26, 12, 2, 1, 65, 244, 272, 126, 50, 8, 2, 1, 129, 730, 1056, 626, 252, 50, 12, 2, 1, 257, 2188, 4160, 3126, 1394, 344, 80, 12, 4, 1, 513, 6562, 16512, 15626, 8052, 2402, 576, 90, 18, 2
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, ...
2, 4, 10, 28, 82, 244, ...
2, 6, 20, 72, 272, 1056, ...
2, 6, 26, 126, 626, 3126, ...
4, 12, 50, 252, 1394, 8052, ...
-
Table[Function[k, n^k Product[1 + Boole[PrimeQ[d]]/d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j]^2 PolyLog[-k, x^j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, Sum[MoebiusMu[n/d]^2 d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Comments