cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A078893 Composite numbers k such that phi(k) - 1 is prime, where phi is Euler's totient function (A000010).

Original entry on oeis.org

8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 26, 27, 28, 30, 33, 35, 36, 38, 39, 42, 44, 45, 49, 50, 51, 52, 54, 56, 62, 64, 65, 66, 68, 69, 70, 72, 77, 78, 80, 81, 84, 86, 90, 91, 92, 93, 95, 96, 98, 99, 102, 104, 105, 111, 112, 117, 120, 121, 122, 123, 124, 129, 130, 133
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 12 2002

Keywords

Comments

A078892 with the primes removed. - Ray Chandler, May 26 2008

Crossrefs

Programs

  • Mathematica
    Select[Range[150],CompositeQ[#]&&PrimeQ[EulerPhi[#]-1]&] (* Harvey P. Dale, Dec 28 2021 *)
  • PARI
    is(n)=!isprime(n) && isprime(eulerphi(n)-1) \\ Charles R Greathouse IV, Feb 21 2013

A068014 Nonprimes n such that 1+phi(n) and -1 + sigma(n) are prime numbers.

Original entry on oeis.org

6, 10, 14, 21, 26, 34, 38, 40, 46, 55, 57, 58, 60, 63, 74, 76, 86, 88, 93, 111, 114, 117, 118, 124, 126, 135, 145, 153, 158, 166, 178, 184, 186, 190, 194, 198, 206, 208, 209, 216, 221, 224, 230, 232, 238, 250, 252, 254, 260, 266, 270, 278, 280, 295, 297, 298
Offset: 1

Views

Author

Labos Elemer, Feb 08 2002

Keywords

Comments

1+A000010(n) and -1+A000203(n) are primes but n is nonprime.

Examples

			For n = 38, phi(38) + 1 = 19 and sigma(38) - 1 = 1 + 2 + 19 + 38 - 1 = 59. [corrected by _Peter Munn_, Dec 30 2017]
		

Crossrefs

Programs

  • Mathematica
    Do[s=-1+DivisorSigma[1, n]; s1=1+EulerPhi[n]; If[PrimeQ[s]&&PrimeQ[s1]&&!PrimeQ[n], Print[{n, s1, s}]], {n, 1, 1000}] (* generates sequence and related primes too *)
    Select[Range@ 300, And[CompositeQ@ #, AllTrue[{1 + EulerPhi@ #, -1 + DivisorSigma[1, #]}, PrimeQ]] &] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    isok(n) = !isprime(n) && isprime(1+eulerphi(n)) && isprime(sigma(n)-1); \\ Michel Marcus, Dec 29 2017
Previous Showing 11-12 of 12 results.