cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 105 results. Next

A381540 Numbers appearing only once in A048767 (Look-and-Say partition of prime indices).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 121
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  24: {1,1,1,2}
		

Crossrefs

- fixed points are A048768, A217605
- conjugate is A381431, fixed points A000961, A000005
- all numbers present are A351294, conjugate A381432
- numbers missing are A351295, conjugate A381433
- numbers appearing only once are A381540 (this), conjugate A381434
- numbers appearing more than once are A381541, conjugate A381435
A000040 lists the primes.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381440 lists Look-and-Say partition of prime indices, conjugate A381436.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    hls[y_]:=Product[Prime[Count[y,x]]^x,{x,Union[y]}];
    Select[Range[100],Count[hls/@IntegerPartitions[Total[prix[#]]],#]==1&]

A387115 Number of ways to choose a sequence of distinct strict integer partitions, one of each prime index of n.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 2, 0, 0, 2, 3, 0, 4, 2, 2, 0, 5, 0, 6, 0, 2, 3, 8, 0, 2, 4, 0, 0, 10, 2, 12, 0, 3, 5, 4, 0, 15, 6, 4, 0, 18, 2, 22, 0, 0, 8, 27, 0, 2, 2, 5, 0, 32, 0, 6, 0, 6, 10, 38, 0, 46, 12, 0, 0, 8, 3, 54, 0, 8, 4, 64, 0, 76, 15, 2, 0, 6, 4, 89, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			The prime indices of 15 are (2,3), and there are a(15) = 2 choices:
  ((2),(3))
  ((2),(2,1))
The prime indices of 121 are (5,5), and there are a(121) = 6 choices:
  ((5),(4,1))
  ((5),(3,2))
  ((4,1),(5))
  ((4,1),(3,2))
  ((3,2),(5))
  ((3,2),(4,1))
		

Crossrefs

For divisors instead of partitions we have A355739, see A355740, A355733, A355734.
Allowing repeated partitions gives A357982, see A299200, A357977, A357978.
Twice-partitions of this type are counted by A358914, strict case of A270995.
The disjoint case is A383706.
Allowing non-strict partitions gives A387110, for prime factors A387133.
For initial intervals instead of strict partitions we have A387111.
For constant instead of strict partitions we have A387120.
Positions of 0 are A387176 (non-choosable), complement A387177 (choosable).
A000041 counts integer partitions, strict A000009.
A003963 multiplies together the prime indices of n.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]],UnsameQ@@#&]],{n,100}]

A332422 If n = Product (p_j^k_j) then a(n) = Sum ((-1)^(pi(p_j) + 1) * pi(p_j)), where pi = A000720.

Original entry on oeis.org

0, 1, -2, 1, 3, -1, -4, 1, -2, 4, 5, -1, -6, -3, 1, 1, 7, -1, -8, 4, -6, 6, 9, -1, 3, -5, -2, -3, -10, 2, 11, 1, 3, 8, -1, -1, -12, -7, -8, 4, 13, -5, -14, 6, 1, 10, 15, -1, -4, 4, 5, -5, -16, -1, 8, -3, -10, -9, 17, 2, -18, 12, -6, 1, -3, 4, 19, 8, 7, 0, -20, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 12 2020

Keywords

Comments

Sum of odd indices of distinct prime factors of n minus the sum of even indices of distinct prime factors of n.

Examples

			a(66) = a(2 * 3 * 11) = a(prime(1) * prime(2) * prime(5)) = 1 - 2 + 5 = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ ((-1)^(PrimePi[#[[1]]] + 1) PrimePi[#[[1]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 72}]
    nmax = 72; CoefficientList[Series[Sum[(-1)^(k + 1) k x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k * x^prime(k) / (1 - x^prime(k)).

A373956 Greatest sum of run-compression of a permutation of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 4, 6, 5, 5, 1, 7, 5, 8, 5, 6, 6, 9, 4, 3, 7, 2, 6, 10, 6, 11, 1, 7, 8, 7, 6, 12, 9, 8, 5, 13, 7, 14, 7, 7, 10, 15, 4, 4, 7, 9, 8, 16, 5, 8, 6, 10, 11, 17, 7, 18, 12, 8, 1, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 5
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 24 are {1,1,1,2}, with permutations such as (1,1,2,1) whose run-compression sums to 4, so a(24) = 4.
The prime indices of 216 are {1,1,1,2,2,2}, with permutations such as (1,2,1,2,1,2) whose run-compression sums to 9, so a(216) = 9.
		

Crossrefs

Positions of first appearances are 1 followed by the primes A000040.
Positions of 1 are A000079 (powers of two) except 1.
Positions of 2 are A000244 (powers of three) except 1.
Positions of 3 are {6} U A000351 (six or powers of five) except 1.
For number of runs instead of sum of run-compression we have A373957.
For prime factors instead of indices we have A374250.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors (or prime indices).
A056239 adds up prime indices, row sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 lists run-compression of prime indices, sum A066328.
A335433 lists numbers whose prime indices are separable, complement A335448.
A373949 counts compositions by sum of run-compression, opposite A373951.
A374251 run-compresses standard compositions, sum A373953, rank A373948.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Max@@(Total[First/@Split[#]]&/@Permutations[prix[n]]),{n,100}]

Formula

a(n) = A056239(n) iff n belongs to A335433 (the separable case), complement A335448.

A374247 The greatest number of runs possible in a permutation of the prime factors of n (A373957) minus the number of distinct such factors (A001221).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 07 2024

Keywords

Comments

If n has separable prime factors (A335433), then a(n) = A001222(n) - A001221(n) = A046660(n). A multiset is separable iff it has an anti-run permutation (meaning there are no adjacent equal parts).

Examples

			The runs of the 6 permutations of the prime factors of 36 are:
  ((2,2),(3,3))
  ((2),(3),(2),(3))
  ((2),(3,3),(2))
  ((3),(2,2),(3))
  ((3),(2),(3),(2))
  ((3,3),(2,2))
The longest length is 4, so a(36) = 4 - 2 = 2.
		

Crossrefs

Positions of first appearances appear to be A026549.
Positions of nonzero terms are A126706, complement A303554.
This is an opposite version of A373957.
The sister-sequence A374246 uses A001222 instead of A001221.
This is the number of nonzero terms in row n of A374252.
A003242 counts run-compressed compositions, i.e., anti-runs.
A008480 counts permutations of prime factors, by number of runs A374252.
A027746 lists prime factors, row-sums A001414.
A027748 is run-compression of prime factors, row-sums A008472.
A304038 is run-compression of prime indices, row-sums A066328.
A333755 counts compositions by number of runs.
A335433 lists separable numbers, complement A335448.
A374250 maximizes sum of run-compression, for indices A373956.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Max@@Table[Length[Split[y]], {y,Permutations[prifacs[n]]}]-PrimeNu[n],{n,100}]

Formula

a(n) = A373957(n) - A001221(n).

A375402 Numbers whose maximal anti-runs of weakly increasing prime factors (with multiplicity) have distinct maxima.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, Aug 14 2024

Keywords

Comments

First differs from A349810 in lacking 150.
An anti-run is a sequence with no adjacent equal terms. The maxima of maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the greatest term of each.
The partitions with these Heinz numbers are those with (1) no part appearing more than twice and (2) the greatest part appearing only once.
Note the prime factors can alternatively be written in weakly decreasing order.
How is does the sequence relate to A317092? - R. J. Mathar, Aug 20 2024

Examples

			The maximal anti-runs of prime factors of 150 are ((2,3,5),(5)), with maxima (5,5), so 150 is not in the sequence.
The maximal anti-runs of prime factors of 180 are ((2),(2,3),(3,5)), with maxima (2,3,5), so 180 is in the sequence.
The maximal anti-runs of prime factors of 300 are ((2),(2,3,5),(5)), with maxima (2,5,5), so 300 is not in the sequence.
		

Crossrefs

For identical instead of distinct we have A065200, complement A065201.
A version for compositions (instead of partitions) is A374767.
Partitions of this type are counted by A375133.
For minima instead of maxima we have A375398, counted by A375134.
The complement for minima is A375399, counted by A375404.
The complement is A375403, counted by A375401.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.

Programs

  • Mathematica
    Select[Range[150],UnsameQ@@Max /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]

A380987 Position of first appearance of n in A290106 (product of prime indices divided by product of distinct prime indices).

Original entry on oeis.org

1, 9, 25, 27, 121, 169, 289, 81, 125, 841, 961, 675, 1681, 1849, 2209, 243, 3481, 1125, 4489, 3267, 5329, 6241, 6889, 2025, 1331, 10201, 625, 7803, 11881, 12769, 16129, 729, 18769, 19321, 22201, 2197, 24649, 26569, 27889, 9801, 32041, 32761, 36481, 25947
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The first position of 12 in A290106 is 675, with prime indices {2,2,2,3,3}, so a(12) = 675.
The terms together with their prime indices begin:
      1: {}
      9: {2,2}
     25: {3,3}
     27: {2,2,2}
    121: {5,5}
    169: {6,6}
    289: {7,7}
     81: {2,2,2,2}
    125: {3,3,3}
    841: {10,10}
    961: {11,11}
    675: {2,2,2,3,3}
   1681: {13,13}
   1849: {14,14}
   2209: {15,15}
    243: {2,2,2,2,2}
   3481: {17,17}
   1125: {2,2,3,3,3}
		

Crossrefs

For factors instead of indices we have A064549 (sorted A001694), firsts of A003557.
The additive version for factors is A280286 (sorted A381075), firsts of A280292.
Position of first appearance of n in A290106.
The additive version is A380956 (sorted A380957), firsts of A380955.
For difference instead of quotient see A380986.
The sorted version is A380988.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,10000}];
    Table[Position[q,k][[1,1]],{k,mnrm[q]}]

A380988 Sorted positions of first appearances in A290106 (product of prime indices divided by product of distinct prime indices).

Original entry on oeis.org

1, 9, 25, 27, 81, 121, 125, 169, 243, 289, 625, 675, 729, 841, 961, 1125, 1331, 1681, 1849, 2025, 2187, 2197, 2209, 3125, 3267, 3481, 4489, 4913, 5329, 5625, 6075, 6241, 6561, 6889, 7803, 9801, 10125, 10201, 11881, 11979, 12769, 14641, 15125, 15625, 16129
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The prime indices of 225 are {2,2,3,3}, with image A290106(225) = 6. The prime indices of 169 are {6,6}, also with image 6. Since the latter is the first with image 6, 169 is in the sequence, and 225 is not.
The terms together with their prime indices begin:
     1: {}
     9: {2,2}
    25: {3,3}
    27: {2,2,2}
    81: {2,2,2,2}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   243: {2,2,2,2,2}
   289: {7,7}
   625: {3,3,3,3}
   675: {2,2,2,3,3}
   729: {2,2,2,2,2,2}
   841: {10,10}
   961: {11,11}
  1125: {2,2,3,3,3}
  1331: {5,5,5}
  1681: {13,13}
  1849: {14,14}
  2025: {2,2,2,2,3,3}
		

Crossrefs

For factors instead of indices we have A001694 (unsorted A064549), firsts of A003557.
Sorted firsts of A290106.
The additive version is A380957 (sorted A380956), firsts of A380955.
For difference instead of quotient see A380986.
The unsorted version is A380987.
The additive version for factors is A381075 (unsorted A280286), firsts of A280292.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,1000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]

A381637 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks with distinct sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 2, 4, 2, 5, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 2, 5, 1, 5, 2, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 84 are {1,1,2,4}, with 7 multiset partitions into blocks with distinct sums:
  {{1,1,2,4}}
  {{1},{1,2,4}}
  {{2},{1,1,4}}
  {{1,1},{2,4}}
  {{1,2},{1,4}}
  {{1},{2},{1,4}}
  {{1},{4},{1,2}}
with block-sums: {8}, {1,7}, {2,6}, {2,6}, {3,5}, {1,2,5}, {1,3,4}, of which 6 are distinct, so a(84) = 6.
		

Crossrefs

Allowing any block-sums gives A317141 (lower A300383), before sums A001055.
Before taking sums we had A321469.
For distinct blocks instead of distinct block-sums we have A381452.
If each block is a set we have A381634 (zeros A381806), before sums A381633.
For equal instead of distinct block-sums we have A381872, before sums A321455.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For sets of constant multisets (A050361) see A381715.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@Total/@#&]]],{n,100}]

A374248 Sum of prime indices of n (with multiplicity) minus the greatest possible sum of run-compression of a permutation of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, with sum 7, and we have permutations such as (1,1,1,1,2,1), with run-compression (1,2,1), with sum 4, so a(96) = 7 - 4 = 3.
		

Crossrefs

Positions of zeros are A335433 (separable).
Positions of positive terms are A335448 (inseparable).
This is an opposite version of A373956, for prime factors A374250.
For prime factors instead of indices we have A374255.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors.
A027746 lists prime factors, row-sums A001414.
A027748 is run-compression of prime factors, row-sums A008472.
A056239 adds up prime indices, row-sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 is run-compression of prime indices, row-sums A066328.
A373949 counts compositions by sum of run-compression, opposite A373951.
A373957 gives greatest number of runs in a permutation of prime factors.
A374251 run-compresses standard compositions, sum A373953, rank A373948.
A374252 counts permutations of prime factors by number of runs.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[prix[n]]-Max@@(Total[First/@Split[#]]&/@Permutations[prix[n]]),{n,100}]

Formula

a(n) = A056239(n) - A373956(n).
Previous Showing 51-60 of 105 results. Next