cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A125245 Numbers k such that binomial(6k, k) + 1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 10, 15, 98, 111, 118, 236, 280, 512, 1284, 1303, 1818, 2525, 2692, 4620, 8405, 11539, 13190, 21525, 30338, 48069, 50687, 56208, 56620, 81091, 101488
Offset: 1

Views

Author

Alexander Adamchuk, Nov 25 2006

Keywords

Comments

a(25) > 50000. - Robert Price, May 13 2019

Crossrefs

Cf. A125244 = numbers n such that binomial(6n, n) - 1 is prime. Cf. A066699 = numbers n such that binomial(2n, n) + 1 is prime. Cf. A066726 = numbers n such that binomial(2n, n) - 1 is prime. Cf. A125220, A125221, A125240, A125241, A125242, A125243.

Programs

  • Mathematica
    Do[f=Binomial[6n, n]+1; If[PrimeQ[f], Print[n]], {n, 1, 1000}]

Extensions

More terms from Ryan Propper, Mar 28 2007
a(1)=0 and a(20)-a(24) from Robert Price, May 13 2019
a(25)-a(29) from Georg Grasegger, Jun 23 2025

A085793 Numbers k such that (k-1)*binomial(2k,k) + 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 13, 17, 18, 22, 23, 28, 31, 48, 49, 52, 80, 99, 167, 201, 295, 372, 381, 391, 638, 653, 720, 779, 887, 1047, 1454, 1647, 1719, 2405, 3234, 3257, 3542, 3623, 3765, 3796, 4337, 4490, 5228, 6507, 8544, 9990, 10000, 12478, 13479, 15487, 17115
Offset: 1

Views

Author

Ed Pegg Jr, Jul 23 2003

Keywords

Comments

a(69) > 10^5 - Robert Price, Sep 15 2024

Examples

			9999 * 20000!/(10000!)^2 + 1 is prime
		

Crossrefs

Programs

Extensions

a(53)-a(68) from Robert Price, Sep 15 2024

A066727 Least factor of n^phi(n) - 1.

Original entry on oeis.org

0, 1, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 17, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 13, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2002

Keywords

Comments

n^Phi(n)-1 is never prime. This sequence is an outgrowth of Euler's generalization to Fermat's little theorem.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ a = Append[a, FactorInteger[ n^EulerPhi[n] - 1, FactorComplete -> False][[1, 1]]], {n, 1, 100}]; a
  • PARI
    A020639(n) = if(1==n,n,forprime(p=2,,if(!(n%p),return(p))));
    A066727(n) = if(1==n,0,A020639((n^eulerphi(n))-1)); \\ Antti Karttunen, Oct 24 2024

Formula

For n > 1, a(n) = A020639(A066916(n)). - Antti Karttunen, Oct 24 2024

A067316 a(n) is the number of values of j, 0 <= j <= n, such that 1 + binomial(n,j) is prime.

Original entry on oeis.org

1, 2, 3, 2, 5, 4, 4, 2, 5, 6, 6, 6, 6, 4, 5, 2, 6, 8, 8, 6, 6, 4, 4, 2, 11, 4, 4, 8, 8, 8, 4, 2, 6, 4, 8, 14, 8, 4, 5, 6, 12, 10, 4, 6, 9, 8, 8, 4, 6, 8, 6, 10, 6, 6, 12, 6, 8, 4, 12, 2, 6, 8, 4, 2, 8, 18, 8, 2, 6, 14, 10, 16, 10, 6, 4, 10, 13, 8, 12, 4, 8, 2, 8, 14, 2, 6, 4, 10, 10, 16, 10, 10, 9
Offset: 0

Views

Author

Labos Elemer, Jan 15 2002

Keywords

Examples

			For n = 8, the primes are 2, 29, 71, 29, 2, so a(n) = 5.
a(n) = 6 for n = 9, 10, 11, 12. Also, a(n) = 10 for n = 149, ..., 154.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[Table[PrimeQ[Binomial[n, w]+1], {w, 0, n}], True]
  • PARI
    a(n) = sum(j=0, n, isprime(1 + binomial(n,j))); \\ Michel Marcus, Oct 30 2018
    
  • PARI
    a(n) = 2 * sum(k=0, (n-1)\2, isprime(binomial(n, k) + 1)) + if(!(n%2), isprime(binomial(n, n/2) + 1)); \\ Amiram Eldar, Jul 18 2024

A075840 Primes of the form (2*n)!/(n!)^2+1.

Original entry on oeis.org

2, 3, 7, 71, 3433, 2704157, 35345263801, 2104098963721, 6892620648693261354601, 410795449442059149332177041, 1520803477811874490019821888415218657, 5949105755928259715106809205795376486501, 1480212998448786189993816895482588794876101
Offset: 1

Views

Author

Donald S. McDonald, Oct 14 2002

Keywords

Examples

			7 is a term because C(4,2)+1 = 6+1 = 7 is prime.
		

References

  • New Zealand Science Monthly, Bulletin Board, Feb. 1999. Binomial(300,150)+185 = nextprime.

Crossrefs

Cf. A092751 = n such that (2*n)!/(n!)^2+1 is prime, A112858 = primes of the form (2*n)!/(n!)^2-1.
Cf. A000984, n's are in A066699.

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is Factorial(2*n) div Factorial(n)^2+1]; // Vincenzo Librandi Mar 17 2015
  • Mathematica
    a = Select[ Range[100], PrimeQ[Binomial[2#, # ] + 1] & ]; Binomial[2a, a] + 1
    Select[Table[(2 n)! / (n!)^2 + 1, {n, 0, 80}], PrimeQ] (* Vincenzo Librandi, Mar 17 2015 *)
  • PARI
    v=[]; for(n=0,100,x=bin(2*n,n)+1; if(isprime(x), v=concat(v,x),)); v
    

Extensions

Edited by Robert G. Wilson v, Oct 15 2002
Definition corrected by Alexander Adamchuk, Nov 30 2007
Edited by N. J. A. Sloane, Nov 30 2007
a(13) from Vincenzo Librandi, Mar 17 2015

A234963 Number of ways to write n = k + m with k > 0 and m > 2 such that C(2*sigma(k) + phi(m), sigma(k) + phi(m)/2) - 1 is prime, where sigma(k) is the sum of all positive divisors of k and phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 0, 3, 2, 2, 3, 3, 5, 3, 4, 3, 3, 3, 2, 3, 0, 3, 3, 4, 3, 0, 1, 2, 3, 1, 2, 3, 3, 1, 3, 3, 4, 1, 2, 3, 3, 2, 6, 4, 1, 4, 2, 3, 2, 2, 2, 4, 3, 2, 3, 3, 2, 4, 3, 3, 0, 2, 3, 1, 3, 1, 2, 0, 3, 1, 4, 4, 4, 1, 0, 5, 2, 1, 3, 2, 2, 1, 2, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 01 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n >= 180.
Clearly, this implies that there are infinitely many primes of the form C(2*n,n) - 1. We have verified the conjecture for n up to 10000.
Note that every n = 400, ..., 9123 can be written as k + m with k > 0 and m > 0 such that f(k, m) = sigma(k) + phi(m) is even and C(f(k, m) + 2, f(k, m)/2 + 1) + 1 is prime, but this fails for n = 9124.

Examples

			a(5) = 1 since 5 = 1 + 4 with C(2*sigma(1) + phi(4), sigma(1) + phi(4)/2) - 1 = C(4, 2) - 1 = 5 prime.
a(28) = 1 since 28 = 2 + 26 with C(2*sigma(2) + phi(26), sigma(2) + phi(26)/2) - 1 = C(18, 9) - 1 = 48619 prime.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_] := DivisorSigma[1, n];
    f[n_,k_] := Binomial[2*sigma[k] + EulerPhi[n-k], sigma[k] + EulerPhi[n-k]/2] - 1;
    a[n_] := Sum[If[PrimeQ[f[n,k]], 1, 0], {k, 1, n-3}];
    Table[a[n], {n, 1, 100}]

A066732 Least k such that the least factor of k^Phi(k) -1 is the n-th prime.

Original entry on oeis.org

3, 4, 6, 18, 150, 60, 30, 22440, 120360, 44880, 5610, 11730, 8160, 473280, 277440, 131070, 548760, 920040, 750720, 440130, 329970, 27030, 5689560, 522240, 1020, 3028890, 2639760, 6866130, 251430, 134130, 7481190, 2390880, 2664240, 9926130, 279480, 9730290
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2002

Keywords

Examples

			18^Phi(18)-1 = 18^6-1 = 34012223 = 7^3 * 17 * 19 * 307. Therefore since 7, the fourth prime, is the least prime in the factorization, a(4) = 18.
		

Crossrefs

Cf. A066699.

Programs

  • Mathematica
    a = Table[0, {53} ]; Do[b = 1; While[ PowerMod[n, EulerPhi[n], Prime[b]] != 1, b++ ]; If[ a[[b]] == 0, a[[b]] = n], {n, 3, 10^6} ]

Extensions

a(35)-a(36) from Robert Price, Nov 06 2023
Previous Showing 11-17 of 17 results.