cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A378331 Decimal expansion of the base 7 Champernowne constant.

Original entry on oeis.org

1, 9, 4, 4, 3, 5, 5, 3, 5, 0, 8, 6, 2, 4, 0, 5, 2, 1, 4, 7, 5, 8, 4, 0, 0, 9, 3, 0, 8, 2, 9, 0, 8, 5, 7, 6, 4, 5, 2, 9, 3, 2, 9, 7, 1, 0, 5, 0, 4, 2, 2, 1, 1, 2, 4, 7, 9, 5, 8, 8, 5, 3, 1, 2, 3, 3, 6, 7, 9, 0, 8, 8, 7, 3, 9, 4, 0, 3, 5, 6, 6, 3, 9, 7, 0, 8, 5
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 7 and then converted into base 10.
This constant is 7-normal.

Examples

			0.194435535086240521475840093082908576452932971050422112479588531233679088...
		

Crossrefs

(base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[7], 10, 100]]

A378332 Decimal expansion of the base 8 Champernowne constant.

Original entry on oeis.org

1, 6, 3, 2, 6, 4, 8, 1, 2, 1, 0, 5, 2, 1, 6, 7, 9, 7, 3, 6, 7, 0, 9, 4, 9, 8, 6, 1, 4, 2, 6, 0, 5, 1, 9, 0, 2, 2, 4, 2, 3, 7, 8, 4, 3, 2, 8, 5, 4, 6, 2, 3, 3, 3, 0, 8, 1, 3, 8, 0, 7, 0, 0, 4, 2, 8, 3, 1, 9, 4, 7, 5, 9, 3, 8, 5, 2, 3, 5, 5, 7, 5, 7, 1, 1, 7, 6
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 8 and then converted into base 10.
This constant is 8-normal.

Examples

			0.163264812105216797367094986142605190224237843285462333081380700428319475...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[8], 10, 100]]

A378333 Decimal expansion of the base 9 Champernowne constant.

Original entry on oeis.org

1, 4, 0, 6, 2, 4, 9, 7, 6, 1, 1, 9, 6, 9, 6, 7, 8, 2, 4, 7, 9, 6, 6, 9, 0, 0, 8, 9, 3, 5, 6, 6, 3, 1, 8, 3, 2, 6, 5, 4, 5, 7, 0, 8, 3, 2, 4, 6, 8, 2, 8, 4, 8, 6, 6, 5, 7, 5, 5, 5, 1, 7, 1, 2, 7, 5, 4, 1, 4, 9, 1, 4, 8, 7, 8, 1, 8, 5, 4, 9, 5, 2, 4, 3, 6, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 9 and then converted into base 10.
This constant is 9-normal.

Examples

			0.140624976119696782479669008935663183265457083246828486657555171275414914...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[9], 10, 100]]

A353962 Square array read by descending antidiagonals: The n-th row gives the decimal expansion of the base-n Champernowne constant.

Original entry on oeis.org

8, 6, 5, 2, 9, 4, 2, 8, 2, 3, 4, 9, 6, 1, 2, 0, 5, 1, 0, 3, 1, 1, 8, 1, 7, 9, 9, 1, 2, 1, 1, 3, 8, 4, 6, 1, 5, 6, 1, 6, 6, 4, 3, 4, 1, 8, 7, 1, 1, 2, 3, 2, 0, 2, 1, 6, 5, 1, 1, 6, 5, 6, 6, 3, 0, 0, 8, 3, 1, 1, 8, 5, 4, 2, 4, 9, 9, 0, 0, 8, 1, 1, 5, 3, 8, 4, 5, 9, 9, 9, 0
Offset: 2

Views

Author

Davis Smith, May 12 2022

Keywords

Comments

The base-n Champernowne constant (C_n) is normal in base n. A(n,k) is the (k+1)-th decimal digit of the fractional part of C_n.

Examples

			The square array A(n,k) begins:
  n/k | 0  1  2  3  4  5  6  7  8  9 10 11 ...
  ----+---------------------------------------
   2  | 8  6  2  2  4  0  1  2  5  8  6  8 ...
   3  | 5  9  8  9  5  8  1  6  7  5  3  8 ...
   4  | 4  2  6  1  1  1  1  1  1  1  1  1 ...
   5  | 3  1  0  7  3  6  1  1  1  1  1  1 ...
   6  | 2  3  9  8  6  2  6  8  5  8  1  5 ...
   7  | 1  9  4  4  3  5  5  3  5  0  8  6 ...
   8  | 1  6  3  2  6  4  8  1  2  1  0  5 ...
   9  | 1  4  0  6  2  4  9  7  6  1  1  9 ...
  10  | 1  2  3  4  5  6  7  8  9  1  0  1 ...
  ...
		

Crossrefs

Rows: A066716 (n=2), A077771 (n=3), A033307 (n=10).
Cf. A063945.

Programs

  • Mathematica
    A[n_,k_]:=Mod[Floor[ChampernowneNumber[n]10^(k + 1)] ,10]; Flatten[Table[Reverse[Table[A[n-k,k],{k,0,n-2}]],{n,2,14}]] (* Stefano Spezia, May 13 2022 *)

Formula

A(n,k) = floor(C_n*10^(k+1)) mod 10 where C_n (the base-n Champernowne constant) = Sum_{i>=1} i/(n^(i + Sum_{k=1..i-1} floor(log_n(k+1)))).

A100125 Decimal expansion of Sum_{n>0} n/(2^(n^2)).

Original entry on oeis.org

6, 3, 0, 9, 2, 0, 5, 5, 9, 2, 5, 5, 1, 8, 5, 8, 6, 4, 7, 7, 8, 3, 2, 4, 0, 0, 3, 9, 0, 7, 9, 4, 3, 3, 7, 0, 0, 9, 2, 1, 5, 1, 4, 2, 9, 9, 2, 1, 7, 8, 7, 9, 8, 6, 8, 0, 6, 4, 4, 4, 2, 4, 8, 9, 9, 9, 8, 9, 8, 0, 8, 1, 0, 7, 8, 3, 8, 1, 7, 7, 3, 4, 7, 3, 8, 8, 2, 0, 0, 1, 9, 2, 0, 6, 4, 4, 4, 5, 2, 1
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 11 2004

Keywords

Comments

This number is obviously 2-dense, but not 2-normal: any finite binary string s representing the value N will appear in its digits, not later than those added by the term N/2^(N^2), but nonzero digits have density zero since the gap between those added by subsequent terms is increasing much faster (~ n) than the maximal possible number of new nonzero digits (~ log_2(n)). - M. F. Hasler, Mar 22 2017

Examples

			0.6309205592551858647783240039079433700921514299217879868...
		

Crossrefs

Cf. A066716: binary Champernowne constant.

Programs

  • Mathematica
    RealDigits[N[Sum[n/(2^(n^2)), {n, 4!}], 100]][[1]] (* Arkadiusz Wesolowski, Sep 29 2011 *)
  • PARI
    default(realprecision,100);sum(n=1,100,n/(2^(n^2)),0.) \\ Typo corrected. sum(n=1,100,n*1.>>(n^2)) is 25 x faster for 1000 digits. - M. F. Hasler, Mar 22 2017

Extensions

Offset corrected by Arkadiusz Wesolowski, Sep 29 2011

A180443 Decimal expansion of constant defined in A030315.

Original entry on oeis.org

5, 6, 8, 8, 7, 9, 9, 3, 7, 0, 6, 5, 9, 7, 2, 7, 1, 4, 2, 2, 1, 1, 0, 4, 8, 5, 8, 3, 7, 5, 3, 0, 2, 7, 1, 0, 7, 1, 7, 1, 1, 7, 6, 2, 8, 6, 1, 5, 8, 5, 0, 4, 5, 2, 7, 4, 1, 9, 6, 4, 3, 9, 2, 7, 2, 1, 3, 4, 6, 6, 2, 9, 7, 0, 4, 7, 4, 1, 7, 7, 0, 9, 7, 8, 9, 8, 0
Offset: 0

Views

Author

Jonathan Vos Post, Sep 05 2010

Keywords

Comments

This constant is 2-normal. - Charles R Greathouse IV, Feb 06 2015

Examples

			0.56887993706597271422110485837530271071711762861585045274...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[1 - ChampernowneNumber[2]/2, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)

Formula

Equals 1 - A066716 / 2. - Amiram Eldar, May 22 2023

Extensions

a(30) onward corrected by Sean A. Irvine, Jun 09 2024
Previous Showing 11-16 of 16 results.