cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A082406 Numbers k such that k divides Sum_{j=1..k} binomial(2j,j).

Original entry on oeis.org

1, 2, 5, 8, 11, 12, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 130, 131, 137, 149, 167, 173, 179, 191, 196, 197, 227, 233, 238, 239, 251, 257, 263, 266, 269, 281, 293, 311, 317, 322, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479
Offset: 1

Views

Author

Benoit Cloitre, Apr 23 2003

Keywords

Crossrefs

Cf. A066796.

Programs

  • Mathematica
    Select[Range[500],Divisible[Sum[Binomial[2k,k],{k,#}],#]&] (* Harvey P. Dale, Feb 16 2013 *)
    A066796 = Accumulate[Table[Binomial[2*k, k], {k, 1, 1000}]]; Select[Range[Length[A066796]], Divisible[A066796[[#]], #] &] (* Vaclav Kotesovec, Feb 15 2019 *)

Formula

Is a(n) asymptotic to c*n*log(n) with 2 < c < 2.3?

A120278 a(n) = Sum_{m=1..n} Sum_{k=1..m} C(2*k,k), where C(2*k,k) = (2*k)!/(k!)^2 = A000984(k).

Original entry on oeis.org

2, 10, 38, 136, 486, 1760, 6466, 24042, 90238, 341190, 1297574, 4958114, 19019254, 73196994, 282492254, 1092867904, 4236849774, 16455966944, 64020347914, 249431257704, 973100041934, 3800867789884, 14862066265434, 58170868424084
Offset: 1

Views

Author

Alexander Adamchuk, Jul 04 2006

Keywords

Comments

a(2*(p-1)) is divisible by p^2 for p=7,13,19,31,37,43,61,67.. A002476 (Primes of the form 6m + 1).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(2k)!/(k!)^2,{k,1,m}],{m,1,n}],{n,1,50}]
    CoefficientList[Series[(1/Sqrt[1-4 x]-1)/((x-1)^2 x),{x,0,50}],x] (* Harvey P. Dale, May 24 2011 *)

Formula

a(n) = Sum_{m=1..n} Sum_{k=1..m} (2*k)!/(k!)^2.
a(n) = 2 * Sum_{k=1..n} A079309(k) = Sum_{k=1..n} A066796(k). - Alexander Adamchuk, Sep 01 2006
G.f.: x*(1/sqrt(1-4*x)-1)/(x*(x-1)^2). - Harvey P. Dale, May 24 2011
Recurrence: n*a(n) = 2*(3*n-1)*a(n-1) - (9*n-4)*a(n-2) + 2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(2*n+4)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012

A147291 a(n) = Sum_{k=1..n^2-1} binomial(2k,k).

Original entry on oeis.org

0, 28, 17576, 209295260, 43308802158650, 150315393336149895056, 8610524734277600186228691452, 8068213695203463278728832778415607708, 122985780058082302876789680971972469134558550878, 30386103720799858392019761983012781659021124133753353112778
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k], {k, 1, n^2 - 1}], {n, 1, 10}] (* Vaclav Kotesovec, Jun 07 2019 *)
  • PARI
    a(n) = sum(k=1, n^2-1, binomial(2*k,k)); \\ Michel Marcus, Jul 05 2018

Formula

a(n) ~ 4^(n^2) / (3*sqrt(Pi)*n). - Vaclav Kotesovec, Jun 07 2019

A167912 a(n) = (1/(3^n)^2) * Sum_{k=0..(3^n-1)} binomial(2k,k).

Original entry on oeis.org

1, 217, 913083596083, 18744974860247264575032720770000376335095039
Offset: 1

Views

Author

Alexander Adamchuk, Nov 15 2009

Keywords

Comments

Note that a(n) mod 27 = a(n) mod 9 = a(n) mod 3 = 1.
The Maple program yields the first seven terms; easily adjustable for obtaining more terms. However, a(4) has 44 digits, a(5) has 140 digits, a(6) has 432 digits and a(7) has 1308 digits. - Emeric Deutsch, Nov 22 2009

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: (sum(binomial(2*k, k), k = 0 .. 3^n-1))/3^(2*n) end proc: seq(a(n), n = 1 .. 7); # Emeric Deutsch, Nov 22 2009
  • Mathematica
    Table[(1/3^n)^2 * Sum[Binomial[2 k, k], {k, 0, 3^n - 1}], {n, 1, 5}] (* G. C. Greubel, Jul 01 2016 *)

Extensions

a(4) from Emeric Deutsch, Nov 22 2009

A151912 Expansion of (1-8x-8x^3)/(1-2x+4x^2)^2.

Original entry on oeis.org

1, -4, -28, -56, 32, 416, 832, -256, -4864, -9728, 2048, 51200, 102400, -16384, -507904, -1015808, 131072, 4849664, 9699328, -1048576, -45088768, -90177536, 8388608, 411041792, 822083584, -67108864, -3690987520, -7381975040
Offset: 0

Views

Author

Paul Barry, Mar 15 2008

Keywords

Comments

2*a(n) is the Hankel transform of A066796.

Formula

a(n)=2^n*A138341(n);

A181990 a(n) = Sum_{0 <= k <= m < p} (binomial(m, k)^(p-1))/p, where p is the n-th prime.

Original entry on oeis.org

3, 399, 12708885, 124515078454872901983423, 39212583445587381894247266262023061, 43487633454143579523135045521112077473364484383507327790688372131, 157851796824901989964381293031623545741924564754192453966085327785455257503133278729
Offset: 2

Views

Author

Alexander Adamchuk, Apr 04 2012

Keywords

Comments

a(n) is a sum of all elements in the first p rows of Pascal's triangle each raised to the (p-1) power and divided by p, where p is the n-th prime.
For p = 3 and 7 (and their powers like 3, 9, 27, ... and 7, 49, ...) the sums of all elements in n = p^k top rows of Pascal's triangle each raised to the (n-1) = (p^k-1) power are divisible by n^2 = p^(2k) for all k > 0.

Crossrefs

Programs

  • Mathematica
    Table[(Sum[Binomial[m, k]^(Prime[n] - 1), {m, 0, Prime[n] - 1}, {k, 0, m}])/Prime[n], {n, 2, 10}]
  • PARI
    a(n) = my(p=prime(n)); sum(m=0, p-1, sum(k=0, m, binomial(m,k)^(p-1))/p); \\ Michel Marcus, Dec 03 2018
Previous Showing 21-26 of 26 results.