cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A345954 a(n) is the number of ternary strings of length n with at least three 0's.

Original entry on oeis.org

0, 0, 0, 1, 9, 51, 233, 939, 3489, 12259, 41385, 135675, 435185, 1373139, 4279161, 13210219, 40490817, 123438531, 374772041, 1134343131, 3425442705, 10326135475, 31088506905, 93507741771, 281053804769, 844319042211, 2535473709033, 7611873722299, 22847398772529, 68567563468179
Offset: 0

Views

Author

Enrique Navarrete, Jun 29 2021

Keywords

Examples

			a(5)=51 since the strings are the 10 permutations of 11000, the 10 permutations of 22000, the 20 permutations of 12000, the 5 permutations of 10000, the 5 permutations of 20000, and 00000.
		

Crossrefs

Cf. A001047 (at least one 0), A066810 (at least two 0's).

Formula

a(n) = 3^n - (2^(n-3))*(n^2 + 3*n + 8).
E.g.f: exp(2x)*(exp(x)-x^2/2-x-1).
G.f.: x^3/((1 - 2*x)^3*(1 - 3*x)). - Stefano Spezia, Jul 01 2021

A230435 Triangle by rows, A001047 convolved with A000079.

Original entry on oeis.org

1, 2, 5, 4, 10, 19, 8, 20, 38, 65, 16, 40, 76, 130, 211, 32, 80, 152, 260, 422, 665, 64, 160, 304, 520, 844, 1330, 2059, 128, 320, 608, 1040, 1688, 2660, 4118, 6305, 256, 640, 1216, 2080, 3376, 5320, 8236, 12610, 19171
Offset: 0

Views

Author

Christopher Tompkins, Nov 18 2013

Keywords

Comments

Generated from Running Total of each row of A036561.
Left edge is A000079 (offset 0): (1, 2, 4, 8, 16, 32, 64, ...)
Right edge is A001047 (offset 1): (1, 5, 19, 65, 211, 665, ...)
Row sums are A066810 (offset 2): (1, 7, 33, 131, 473, 1611, ...)

Examples

			The start of the sequence as a triangle read by rows:
  1;
  2,  5;
  4,  10, 19;
  8,  20, 38,  65;
  16, 40, 76,  130, 211;
  32, 80, 152, 260, 422, 665;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=Sum[3^j*2^(n-j),{j,0,k}];Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Dec 20 2023 *)

Formula

T(n,k) = Sum_{j=0..k} 3^j*2^(n-j). - Detlef Meya, Dec 20 2023
T(n,k) = 2^n*(3*(3/2)^k-2). - Alois P. Heinz, Dec 20 2023

A272098 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*E1(j,k), E1 the Eulerian numbers A173018, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 8, 7, 1, 0, 16, 33, 15, 1, 0, 32, 131, 131, 31, 1, 0, 64, 473, 883, 473, 63, 1, 0, 128, 1611, 5111, 5111, 1611, 127, 1, 0, 256, 5281, 26799, 44929, 26799, 5281, 255, 1, 0, 512, 16867, 131275, 344551, 344551, 131275, 16867, 511, 1, 0
Offset: 0

Views

Author

Peter Luschny, Apr 20 2016

Keywords

Examples

			Triangle starts:
  [1]
  [2, 0]
  [4, 1, 0]
  [8, 7, 1, 0]
  [16, 33, 15, 1, 0]
  [32, 131, 131, 31, 1, 0]
  [64, 473, 883, 473, 63, 1, 0]
  [128, 1611, 5111, 5111, 1611, 127, 1, 0]
		

Crossrefs

Cf. A000522 (row sums), A000079 (col. 0), A066810 (col. 1).
Cf. A173018.

Programs

  • Maple
    T := (n, k) -> add((-1)^(n-j)*combinat:-eulerian1(j,k)*binomial(-j-1,-n-1), j=0..n): seq(seq(T(n, k), k=0..n), n=0..10);
    # Or:
    egf := (exp(x)*(y - 1))/(y - exp(x*(y - 1))); ser := series(egf, x, 12):
    cx := n -> series(coeff(ser, x, n), y, n + 2):
    seq(seq(n!*coeff(cx(n), y, k), k = 0..n), n = 0..9); # Peter Luschny, Aug 14 2022
  • Mathematica
    <Emanuele Munarini, Oct 19 2023 *)

Formula

E.g.f.: (exp(x)*(y - 1))/(y - exp(x*(y - 1))). - Peter Luschny, Aug 14 2022
T(n,k) = Sum_{i=0..n} Binomial(n,i)*Eulerian(i,k), where Eulerian(n,k) = Eulerian numbers A173018. Equivalently, if T is the matrix generated by T(n,k), B is the binomial matrix and E is the Eulerian matrix, then T = B E. - Emanuele Munarini, Oct 19 2023
Previous Showing 11-13 of 13 results.