cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A124446 a(n) = gcd(A066840(n), A124440(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 4, 1, 4, 5, 6, 3, 3, 2, 16, 4, 1, 9, 20, 6, 5, 11, 24, 1, 12, 1, 42, 7, 8, 15, 64, 10, 16, 6, 54, 9, 9, 6, 80, 10, 6, 21, 110, 2, 11, 23, 96, 3, 4, 8, 156, 13, 1, 10, 168, 18, 28, 29, 120, 15, 15, 6, 256, 24, 10, 33, 272, 22, 24, 35, 216, 18, 36, 2, 342, 30, 24, 39
Offset: 1

Views

Author

Leroy Quet, Nov 01 2006

Keywords

Examples

			Those positive integers which are coprime to 8 and are <= 8/2, are 1 and 3. Those integers which are coprime to 8 and are between 8/2 and 8, are 5 and 7.
So a(8) = gcd(1+3, 5+7) = gcd(4, 12) = 4.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    G:= add(numtheory:-mobius(n)*n*x^(2*n)/((1-x^n)*(1-x^(2*n))^2),n=1..N/2):
    S:= series(G,x,N+1):
    A66840:= [seq(coeff(S,x,j),j=1..N)]:
    [1,1,seq(igcd(A66840[n], n*numtheory:-phi(n)/2),n=3..N)]; # Robert Israel, Feb 02 2021
  • Mathematica
    f1[n_] := Plus @@ Select[Range[Floor[n/2]], GCD[ #,n] == 1 &]; f2[n_] := Plus @@ Select[Range[Ceiling[n/2], n], GCD[ #, n] == 1 &];Table[GCD[f1[n], f2[n]], {n, 80}] (* Ray Chandler, Nov 12 2006 *)

Extensions

Extended by Ray Chandler, Nov 12 2006

A124447 a(n) = lcm(A066840(n), A124440(n)).

Original entry on oeis.org

0, 1, 2, 3, 21, 5, 30, 12, 140, 16, 120, 18, 399, 99, 322, 48, 900, 533, 630, 60, 480, 425, 1122, 72, 11781, 360, 11102, 126, 4515, 352, 2760, 192, 2000, 832, 5406, 162, 9405, 2349, 6726, 240, 12810, 2046, 7392, 330, 27202, 4235, 9660, 288, 66306, 11656
Offset: 1

Views

Author

Leroy Quet, Nov 01 2006

Keywords

Examples

			Those positive integers which are coprime to 8 and are <= 8/2, are 1 and 3. Those integers which are coprime to 8 and are between 8/2 and 8, are 5 and 7.
So a(8) = lcm(1+3,5+7) = lcm(4,12) = 12.
		

Crossrefs

Programs

  • Mathematica
    f1[n_] := Plus @@ Select[Range[Floor[n/2]], GCD[ #,n] == 1 &]; f2[n_] := Plus @@ Select[Range[Ceiling[n/2], n], GCD[ #, n] == 1 &];Table[LCM[f1[n], f2[n]], {n, 51}] (* Ray Chandler, Nov 12 2006 *)

Extensions

Extended by Ray Chandler, Nov 12 2006

A341031 Numbers k such that A066840(k) is a square.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 22, 26, 32, 34, 38, 46, 54, 58, 62, 64, 74, 82, 86, 94, 106, 118, 122, 128, 134, 142, 146, 158, 166, 171, 178, 194, 202, 206, 214, 218, 226, 254, 255, 256, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 451, 454, 458, 466
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 02 2021

Keywords

Examples

			a(6) = 8 is a term because A066840(8) = 4 = 2^2.
		

Crossrefs

Includes A000079 and A100484.
Cf. A066840.

Programs

  • Maple
    N:= 1000: # for terms <= N
    G:= add(numtheory:-mobius(n)*n*x^(2*n)/((1-x^n)*(1-x^(2*n))^2), n=1..N/2):
    S:= series(G, x, N+1):
    A66840:= [seq(coeff(S, x, j), j=1..N)]:
    select(t -> issqr(A66840[t]), [$1..N]);

A341016 Numbers k such that A124440(k) is a multiple of A066840(k).

Original entry on oeis.org

2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 02 2021

Keywords

Comments

Numbers k such that k*A000010(k)/2 is a multiple of A066840(k).
Includes all multiples of 4.
Are 2, 3, 6 and 10 the only terms that are not multiples of 4?

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    G:= add(numtheory:-mobius(n)*n*x^(2*n)/((1-x^n)*(1-x^(2*n))^2),n=1..N/2):
    S:= series(G,x,N+1):
    A66840:= [seq(coeff(S,x,j),j=1..N)]:
    filter:= n -> n*numtheory:-phi(n)/2 mod A66840[n] = 0:
    select(filter, [$2..N]);

A124440 a(n) = Sum_{n/2<=k<=n, gcd(k,n)=1} k.

Original entry on oeis.org

1, 1, 2, 3, 7, 5, 15, 12, 20, 16, 40, 18, 57, 33, 46, 48, 100, 41, 126, 60, 96, 85, 187, 72, 187, 120, 182, 126, 301, 88, 345, 192, 250, 208, 318, 162, 495, 261, 354, 240, 610, 186, 672, 330, 406, 385, 805, 288, 771, 376, 616, 468, 1027, 365, 830, 504, 774, 616, 1276
Offset: 1

Views

Author

Leroy Quet, Nov 01 2006

Keywords

Examples

			The integers which are >= 10/2 and are <= 10 and which are coprime to 10 are 7 and 9. So a(10) = 7 + 9 = 16.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    G:= add(numtheory:-mobius(n)*n*x^(2*n)/((1-x^n)*(1-x^(2*n))^2), n=1..N/2):
    S:= series(G, x, N+1):
    A66840:= [seq(coeff(S, x, j), j=1..N)]:
    f:= proc(n) n*numtheory:-phi(n)/2 - A66840[n] end proc:
    f(1):= 1: f(2):= 1:
    map(f, [$1..N]); # Robert Israel, Feb 02 2021
  • Mathematica
    a[n_] := Plus @@ Select[Range[Ceiling[n/2], n], GCD[ #, n] == 1 &];Table[a[n], {n, 60}] (* Ray Chandler, Nov 12 2006 *)
  • PARI
    a(n) = sum(k=ceil(n/2), n, if (gcd(n, k)==1, k)); \\ Michel Marcus, Feb 03 2021

Formula

For n > 2, a(n) = phi(n)*n/2 - A066840(n).

Extensions

Extended by Ray Chandler, Nov 12 2006

A282600 a(n) = Sum_(k=1..phi(n)) floor(d_k/2) where d_k are the totatives of n.

Original entry on oeis.org

0, 0, 1, 1, 4, 2, 9, 6, 12, 8, 25, 10, 36, 18, 28, 28, 64, 24, 81, 36, 60, 50, 121, 44, 120, 72, 117, 78, 196, 56, 225, 120, 160, 128, 204, 102, 324, 162, 228, 152, 400, 120, 441, 210, 264, 242, 529, 184, 504, 240, 400, 300, 676, 234, 540, 324, 504, 392, 841, 232
Offset: 1

Views

Author

Michel Marcus, Feb 19 2017

Keywords

Comments

The totatives of n are the numbers k <= n with gcd(k,n) = 1.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (k\2)*(gcd(n, k)==1));

Formula

If n is odd, a(n) = A023896(n)/2 - A000010(n)/4;
If n is even, a(n) = A023896(n)/2 - A000010(n)/2.

A295574 a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^2.

Original entry on oeis.org

0, 1, 1, 1, 5, 1, 14, 10, 21, 10, 55, 26, 91, 35, 70, 84, 204, 75, 285, 140, 210, 165, 506, 196, 525, 286, 549, 406, 1015, 340, 1240, 680, 880, 680, 1190, 654, 2109, 969, 1482, 1080, 2870, 966, 3311, 1650, 2010, 1771, 4324, 1544, 4214, 2050
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2017

Keywords

Comments

n does not divide a(n) iff n = (2^k)*(q^m) with k > 0, m >= 0 and q odd prime such that q == 3 (mod 4) or n = (2^k)*(3^L)*Product_{q} q^(v_q) with k >= 0, L > 0, v_q >= 0 and all q odd primes such that q == 5 (mod 6). - René Gy, Oct 21 2018

Crossrefs

In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.
Cf. A023022.

Programs

  • Maple
    R:=proc(n,k) local x,t1,S;
    t1:={}; S:=0;
    for x from 1 to floor(n/2) do if gcd(x,n)=1 then t1:={op(t1),x^k}; S:=S+x^k; fi; od;
    S; end;
    s:=k->[seq(R(n,k),n=1..50)];
    s(2);
  • Mathematica
    f[n_] := Plus @@ (Select[ Range[n/2], GCD[#, n] == 1 &]^2); Array[f, 50] (* Robert G. Wilson v, Dec 10 2017 *)
  • PARI
    a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^2); \\ Michel Marcus, Dec 10 2017

A295575 a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^3.

Original entry on oeis.org

0, 1, 1, 1, 9, 1, 36, 28, 73, 28, 225, 126, 441, 153, 416, 496, 1296, 469, 2025, 1100, 1710, 1225, 4356, 1800, 4959, 2556, 5581, 4410, 11025, 3872, 14400, 8128, 11090, 8128, 15822, 8910, 29241, 13041, 21996, 16400, 44100, 15426, 53361, 27830, 33716, 29161, 76176, 27936, 77652, 37828
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2017

Keywords

Comments

If p is an odd prime, a(p) = (n^2-1)^2/64. - Robert Israel, Dec 10 2017

Crossrefs

In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.

Programs

  • Maple
    f:= n -> add(t^3, t = select(t->igcd(t,n)=1, [$1..n/2])) :
    map(f, [$1..100]); # Robert Israel, Dec 10 2017
  • Mathematica
    f[n_] := Plus @@ (Select[Range[n/2], GCD[#, n] == 1 &]^3); Array[f, 50] (* Robert G. Wilson v, Dec 10 2017 *)
  • PARI
    a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^3); \\ Michel Marcus, Dec 10 2017

A295576 a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^4.

Original entry on oeis.org

0, 1, 1, 1, 17, 1, 98, 82, 273, 82, 979, 626, 2275, 707, 2674, 3108, 8772, 3027, 15333, 9044, 14994, 9669, 39974, 17668, 50085, 24310, 60597, 50470, 127687, 45604, 178312, 103496, 149908, 103496, 225302, 129750, 432345, 187017, 349830, 266088, 722666
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2017

Keywords

Comments

If p is an odd prime, a(p) = p*(p^2-1)*(3*p^2-7)/480. - Robert Israel, Dec 10 2017

Crossrefs

In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.

Programs

  • Maple
    f:= n -> add(t^4, t = select(t->igcd(t,n)=1, [$1..n/2])):
    map(f, [$1..100]); # Robert Israel, Dec 10 2017
  • Mathematica
    f[n_] := Plus @@ (Select[Range[n/2], GCD[#, n] == 1 &]^4); Array[f, 41] (* Robert G. Wilson v, Dec 10 2017 *)
  • PARI
    a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^4); \\ Michel Marcus, Dec 10 2017

A282601 a(n) = Sum_(k=1..phi(n)/2) floor(d_k/2) where d_k are the totatives of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 1, 3, 1, 6, 2, 9, 3, 6, 6, 16, 5, 20, 8, 14, 10, 30, 10, 29, 15, 28, 18, 49, 14, 56, 28, 38, 28, 48, 24, 81, 36, 54, 36, 100, 30, 110, 50, 64, 55, 132, 44, 124, 57, 96, 72, 169, 56, 130, 78, 122, 91, 210, 56, 225, 105, 136, 120, 186, 80, 272, 128, 182, 102
Offset: 1

Views

Author

Michel Marcus, Feb 19 2017

Keywords

Comments

The totatives of n are the numbers k <= n with gcd(k,n) = 1.

Crossrefs

Programs

  • PARI
    a(n) = {vn = vector(n, k, k); vt = select(x->(gcd(x,n) == 1), vn); sum(k=1, #vt\2, vt[k]\2);}
Showing 1-10 of 14 results. Next