cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A102713 Total sum of odd parts in all compositions of n.

Original entry on oeis.org

1, 2, 8, 18, 48, 110, 260, 586, 1320, 2918, 6412, 13954, 30192, 64926, 138964, 296122, 628664, 1330134, 2805916, 5903090, 12388736, 25942542, 54215268, 113090858, 235502408, 489646150, 1016575020, 2107715426, 4364561680, 9027384958, 18651293172, 38495632794
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2005

Keywords

Crossrefs

Programs

  • PARI
    a(n)={((15*n+4)*2^(n-1) - 2*(3*n+1)*(-1)^n)/27} \\ Andrew Howroyd, Jan 08 2020
    
  • PARI
    Vec(x*(1 + x^2) / ((1 + x)^2*(1 - 2*x)^2) + O(x^35)) \\ Colin Barker, Jan 08 2020

Formula

a(n) = ((15*n+4)*2^(n-1)-2*(3*n+1)*(-1)^n)/27.
From Colin Barker, Jan 08 2020: (Start)
G.f.: x*(1 + x^2) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>4.
(End)

Extensions

Terms a(26) and beyond from Andrew Howroyd, Jan 08 2020

A208477 Difference between the sum of odd parts and the sum of even parts in all the partitions of n.

Original entry on oeis.org

0, 1, 0, 5, 0, 11, 6, 25, 12, 50, 40, 96, 80, 173, 170, 320, 316, 545, 590, 930, 1020, 1552, 1760, 2537, 2900, 4066, 4736, 6450, 7540, 10045, 11856, 15482, 18280, 23555, 27920, 35461, 42032, 52805, 62662, 77955, 92380, 113963, 135040, 165295, 195540, 237866
Offset: 0

Views

Author

Omar E. Pol, Mar 10 2012

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; local g, h;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        else g:= b(n, i-1);
             h:= `if`(i>n, [0, 0], b(n-i, i));
             [g[1]+h[1], g[2]+h[2] +h[1]*i*(2*(i mod 2)-1)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60); # Alois P. Heinz, Mar 10 2012
  • Mathematica
    Map[Total[Select[#, OddQ]] - Total[Select[#, EvenQ]] &[Flatten[IntegerPartitions[#]]] &, -1 + Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
    max = 60; s = Sum[x^(2i) (x^(2i) - 2i (x-1) - 1)/(x + x^(4i) - (x+1) x^(2i) ), {i, 1, Floor[max/2]}]/QPochhammer[x] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

a(n) = A066967(n) - A066966(n).
G.f.: (Sum_{i>0} (2*i-1)*x^(2*i-1)/(1-x^(2*i-1))-2*i*x^(2*i)/(1-x^(2*i))) / Product_{j>0} (1-x^j). - Alois P. Heinz, Mar 10 2012

Extensions

More terms from Alois P. Heinz, Mar 10 2012
Previous Showing 11-12 of 12 results.