cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A226083 Smallest element of the set of largest prime powers p^k dividing C(2*n,n), where p is any prime factor of C(2*n,n).

Original entry on oeis.org

2, 2, 4, 2, 4, 3, 3, 2, 4, 4, 3, 4, 7, 8, 5, 2, 4, 3, 3, 4, 3, 3, 13, 4, 8, 8, 16, 5, 3, 7, 7, 2, 3, 3, 7, 4, 7, 3, 11, 4, 5, 5, 7, 7, 5, 5, 5, 4, 8, 8, 11, 8, 5, 3, 3, 8, 3, 3, 5, 7, 7, 7, 3, 2, 4, 3, 3, 4, 7, 8, 11, 4, 8, 8, 5, 5, 5, 7, 7, 4, 5, 5, 3, 7, 5, 5, 3, 3, 9, 11, 7, 3, 7, 7, 13, 4, 8, 8, 3, 3
Offset: 1

Views

Author

Alois P. Heinz, May 25 2013

Keywords

Examples

			a(89) = 9: C(2*89,89) = 2^4 * 3^2 * 5^3 * 7^2 * 11^1 * ... * 173^1, the smallest prime power is 3^2 = 9.  3^2 is the largest prime power for prime 3 dividing C(2*89,89).
a(9993) = 59: 59^1 is the largest power of 59 dividing C(2*9993,9993), it is smaller than the largest powers of all other prime factors.
		

Crossrefs

Cf. A000040, A000961, A000984, A007318, A226047 (row maxima of A226078).

Programs

  • Maple
    a:= proc(n) local h, i, m, p;
          p:=1; m:=infinity;
          while p < m do p:= nextprime(p); i:= 0;
             h:= 2*n; while h>0 do h:=iquo(h, p); i:=i+h od;
             h:= n;   while h>0 do h:=iquo(h, p); i:=i-2*h od;
             if i>0 then m:= min(m, p^i) fi
          od; m
        end:
    seq(a(n), n=1..100);

Formula

a(n) = min_{p prime, p|C(2n,n)} max_{k, p^k|C(2n,n)} p^k.
a(n) = min_{k=0..A067434(n)-1} A226078(n,k).

A383213 a(n) = number of distinct prime factors of binomial(2n,n+1).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 4, 4, 5, 5, 6, 6, 6, 7, 6, 7, 9, 8, 10, 9, 10, 10, 10, 9, 10, 10, 11, 11, 12, 13, 12, 12, 14, 14, 14, 14, 14, 14, 16, 14, 16, 15, 16, 17, 16, 17, 18, 17, 18, 18, 18, 18, 20, 18, 20, 19, 19, 20, 20, 21, 21, 21, 21, 21, 23, 22, 24, 23, 23, 23
Offset: 1

Views

Author

Clark Kimberling, Apr 19 2025

Keywords

Examples

			binomial(6,4)= 3*5, so a(3)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[Binomial[2 n, n + 1]], {n,  200}]
  • PARI
    a(n) = omega(binomial(2*n,n+1)); \\ Michel Marcus, Apr 19 2025
    
  • Python
    from collections import Counter
    from sympy import factorint
    def A383213(n): return len(sum((Counter(factorint(i)) for i in range(n+2,(n<<1)+1)),start=Counter())-sum((Counter(factorint(i)) for i in range(1,n)),start=Counter())) # Chai Wah Wu, Apr 26 2025

A067437 Number of distinct prime factors in binomial(2*n,n)+1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 3, 2, 2, 1, 2, 3, 3, 4, 2, 2, 1, 2, 4, 1, 3, 2, 4, 4, 3, 4, 3, 2, 3, 2, 2, 2, 5, 4, 3, 1, 4, 3, 2, 3, 2, 4, 2, 1, 3, 3, 4, 2, 6, 3, 7, 5, 4, 5, 3, 3, 2, 3, 5, 1, 5, 2, 3, 4, 3, 1, 6, 6, 3, 1, 3, 2, 5, 2, 4, 4, 4, 2, 6, 2, 2, 1, 3, 4, 3, 2, 4, 3
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeNu[Binomial[2*n,n] + 1]; Array[a,90] (* Amiram Eldar, Apr 23 2022 *)

Formula

a(n) = A001221(A244174(n)). - Amiram Eldar, Apr 23 2022

A071853 Numbers n such that for any x, C(2x,x) never has n distinct prime factors.

Original entry on oeis.org

11, 38, 51, 70, 84, 92, 107, 147, 155, 167, 279, 310, 326, 354, 377, 403, 469, 475, 489, 534, 588, 607, 619, 669, 685, 687, 710, 783, 805, 820, 848, 898, 947, 1010, 1101, 1207, 1332, 1467, 1481, 1520, 1556, 1578, 1738, 1744, 1796, 1802
Offset: 1

Views

Author

Benoit Cloitre, Jun 09 2002

Keywords

Formula

n such that Card ( x : A067434(x) = n ) = 0

Extensions

More terms from Naohiro Nomoto, Jun 16 2002

A071854 a(n) = (number of distinct prime factors in C(2n,n)) - pi(n).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 3, 3, 2, 1, 2, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 4, 5, 5, 4, 4, 4, 3, 4, 3, 3, 4, 4, 5, 5, 4, 5, 5, 5, 4, 4, 4, 5, 5, 5, 4, 4, 5, 6, 5, 5, 5, 6, 5, 4, 5, 6, 5, 6, 5, 6, 6
Offset: 1

Views

Author

Benoit Cloitre, Jun 09 2002

Keywords

Programs

  • PARI
    for(n=1,200,print1(omega(binomial(2*n,n))-sum(i=1,n,isprime(i)),","))

Formula

a(n) = A067434(n) - A000720(n)

A129515 Numbers m such that binomial(2*m, m) has the same prime factors as binomial(2*k, k) for some k > m.

Original entry on oeis.org

87, 199, 237, 467, 607, 967, 1127, 1319, 1483, 1903, 1943, 2012, 2047, 2287, 2348, 2359, 2464, 2479, 2495, 2507, 2623, 2645, 2719, 3349, 3467, 3514, 3568, 3629, 3633, 3712, 3847, 3919, 4088, 4224, 4287, 4360, 4479, 4927, 4987, 5087, 5167, 5224, 5669
Offset: 1

Views

Author

T. D. Noe, Apr 18 2007

Keywords

Comments

The Erdős paper mentions 87 and 607. The paper conjectures that the sequence is infinite. For the m listed here, k=m+1. Note that we need only examine k such that pi(2*m) = pi(2*k), where pi is the prime counting function.

Crossrefs

Cf. A067434 (number of distinct prime factors in binomial(2n, n)).

Programs

  • Mathematica
    s={}; nLst={}; t={}; Do[p=Transpose[FactorInteger[Binomial[2n,n]]][[1]]; If[s!={} && p[[ -1]]!=s[[ -1,-1]], s={}; nLst={}]; pos=Position[s,p,1,1]; If[pos!={}, m=pos[[1,1]]; AppendTo[t,nLst[[m]]], AppendTo[s,p]; AppendTo[nLst,n]], {n,10000}]; t
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    f(n,p)=valp(2*n,p)==2*valp(n,p)
    is(n)=for(k=n+1,nextprime(2*n)\2, forprime(p=2,2*n, if(f(n,p)!=f(k,p), next(2))); return(k)); 0 \\ Charles R Greathouse IV, Oct 18 2017

A213609 Smallest number k such that the number of distinct prime divisors of binomial(2k,k) equals n, otherwise 0.

Original entry on oeis.org

1, 2, 4, 6, 8, 11, 15, 16, 18, 20, 0, 28, 29, 33, 38, 42, 45, 48, 53, 54, 60, 64, 66, 67, 75, 77, 80, 86, 91, 92, 100, 102, 104, 109, 111, 110, 127, 0, 128, 133, 140, 144, 151, 154, 153, 160, 165, 170, 171, 178, 0, 189, 190, 192, 198, 202, 209, 210, 220, 225
Offset: 1

Views

Author

Michel Lagneau, Jun 16 2012

Keywords

Comments

a(A071853(n)) = 0.

Examples

			a(3) = 4 because binomial(2*4,4) = 70 with 3 distinct prime divisors {2, 5, 7}.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 100 do:ii:=0: for k from 1 to 500 while(ii=0) do:x:=binomial(2*k,k):y:=factorset(x): n1:=nops(y):if n1=n then ii:=1:printf(`%d, `,k):else fi:od:if ii=0 then printf(`%d, `,0):else fi:od:

A335209 Numbers k such that binomial(2*k,k) has more distinct prime factors than binomial(2*k,i) for 0 <= i < k.

Original entry on oeis.org

1, 2, 4, 6, 8, 20, 32, 54, 66, 110, 144, 170, 200, 210, 278, 288, 304, 330, 402, 405, 468, 510, 527, 628, 654, 684, 704, 778, 783, 784, 853, 891, 892, 990, 1001, 1035, 1125, 1155, 1232, 1296, 1334, 1384, 1394, 1488, 1495, 1521, 1551, 1575, 1600, 1625, 1645, 1701, 1768, 1875, 1891, 2028, 2072
Offset: 1

Views

Author

Robert Israel, May 26 2020

Keywords

Comments

Numbers k such that A020733(2*k) = 1.

Examples

			a(4)=6 is in the sequence because binomial(12,6) = 924 = 2^2*3*7*11 has 4 distinct prime factors while binomial(12,0) to binomial(12,5) all have at most 3.
7 is not in the sequence because binomial(14,7) = 3432 = 2^3*3*11*13 and binomial(14,6) = 3003 = 3*7*11*13 both have 4 distinct prime factors.
		

Crossrefs

Programs

  • Maple
    filter:=  proc(n) local t, v, i, m;
      m:= 0: t:= 1:
      for i from 1 to n-1 do
       t:= t * ifactor(2*n-i+1)/ifactor(i);
       if type(t,`*`) then v:= nops(t) else v:= 1 fi;
       if v > m then m:= v fi;
      od;
      t:= t*ifactor(n+1)/ifactor(n);
      type(t,`*`) and nops(t) > m
    end proc:
    filter(1):= true:
    select(filter, [$1..2500]); # Robert Israel, May 26 2020
  • Mathematica
    Select[Range@ 1001, Max@ Most@ # < Last@ # &@ PrimeNu@ Binomial[2 #, Range[0, #]] &] (* Michael De Vlieger, May 26 2020 *)
Previous Showing 11-18 of 18 results.