cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A319859 Expansion of Product_{k>0} (1 + (2*k-1)*x^(2*k-1))/(1 - 2*k*x^(2*k)).

Original entry on oeis.org

1, 1, 2, 5, 11, 19, 33, 63, 124, 212, 350, 620, 1107, 1819, 2977, 5076, 8549, 13797, 22199, 36304, 59271, 94406, 148948, 238199, 380653, 595930, 928696, 1460474, 2288948, 3541879, 5460144, 8458886, 13084665, 20046161, 30590724, 46871521, 71711287, 108863135, 164802583
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1+(2*k-1)*x^(2*k-1))/(1-2*k*x^(2*k)),k=1..n),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + (2*k-1)*x^(2*k-1))/(1 - 2*k*x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 06 2018 *)
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, (1+(2*k-1)*x^(2*k-1))/(1-(2*k)*x^(2*k))))

Formula

From Vaclav Kotesovec, Oct 06 2018: (Start)
a(n) ~ c * n * 2^(n/2), where
c = 59.39385182785860961527832575945047265281719... if n is even
c = 59.39502666671757816086328506683601946035153... if n is odd
(End)

A282207 Expansion of Product_{k>=0} (1 + (2*k + 1)*x^(2*k+1)).

Original entry on oeis.org

1, 1, 0, 3, 3, 5, 5, 7, 22, 24, 30, 32, 73, 75, 91, 198, 277, 309, 339, 560, 689, 1078, 1126, 1567, 2703, 3396, 3676, 5086, 7046, 8241, 10896, 13072, 19891, 22975, 27922, 41597, 56117, 62459, 77183, 100793, 131846, 161665, 191446, 255225, 311247, 408418, 467460, 599970, 843441
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2017

Keywords

Comments

Sum of products of terms in all partitions of n into distinct odd parts.

Examples

			a(10) = 30 because we have [9, 1], [7, 3], 9*1 = 9, 7*3 = 21 and 9 + 21 = 30.
		

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1 + (2 k + 1) x^(2 k + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + (2*k + 1)*x^(2*k+1)).

A319860 Expansion of Product_{k>0} (1 - 2*k*x^(2*k))/(1 + (2*k-1)*x^(2*k-1)).

Original entry on oeis.org

1, -1, -1, -2, -2, 3, 8, 7, -6, -2, 12, 10, -9, -10, -98, -171, 12, 224, 178, 300, 30, -992, -547, 1612, 1950, -290, -2859, -4532, -878, 13260, 23998, -6100, -51628, -56630, -24790, 65573, 217178, 103912, -278804, -418582, 25319, 698460, 1300830, 252430, -3165500
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1-2*k*x^(2*k))/(1+(2*k-1)*x^(2*k-1)),k=1..n),x,n+1), x, n), n = 0 .. 45); # Muniru A Asiru, Sep 29 2018
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, (1-(2*k)*x^(2*k))/(1+(2*k-1)*x^(2*k-1))))

Formula

Convolution inverse of A319859.
Previous Showing 11-13 of 13 results.