cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A373826 Sorted positions of first appearances in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

1, 4, 38, 6781, 23238, 26100
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Sorted positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted positions of first appearances in A373820, cf. A027833.
For runs we have A373824 (unsorted A373825), sorted firsts of A373819.
The unsorted version is A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373827 Position of first appearance of n in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

4, 1, 38, 6781, 26100, 23238
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with positions of first appearances a(n).
		

Crossrefs

Positions of first appearances in A373820.
For runs instead of antiruns we have A373825, sorted A373824.
The sorted version is A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]//Most]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A155874 Smallest positive composite number such that a(n)+n is also composite.

Original entry on oeis.org

4, 8, 4, 6, 4, 4, 4, 8, 4, 6, 4, 4, 4, 8, 4, 6, 4, 4, 4, 6, 4, 4, 4, 4, 4, 8, 4, 6, 4, 4, 4, 4, 4, 6, 4, 4, 4, 8, 4, 6, 4, 4, 4, 6, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 4, 8, 4, 6, 4, 4, 4, 4, 4, 6, 4, 4, 4, 8, 4, 6, 4, 4, 4, 4, 4, 6, 4, 4, 4, 6, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 8, 4, 6, 4
Offset: 0

Views

Author

Eric Angelini, Jan 29 2009

Keywords

Comments

a(0)=4. Adding a(0) to n=0 gives 4+0=4, which is a composite number; adding a(1) to n=1 gives 8+1=9 which is composite; adding a(2) to n=2 gives 4+2=6 which is composite; adding a(3) to n=3 gives 6+3=9 which is composite; etc.
At least one of {n+4, n+6, n+8} is divisible by 3, so a(n) is in {4,6,8} for all n. - Charlie Neder, Dec 28 2018

Crossrefs

Cf. A122984.

Programs

  • PARI
    a(n) = {forcomposite(k=4, 10, if (!isprime(k+n), return(k)););} \\ Michel Marcus, Dec 28 2018

Formula

If n+4 is in A001359, a(n) = 8. If n+4 is in A067774, a(n) = 6. Otherwise, a(n) = 4. - Charlie Neder, Dec 28 2018

Extensions

More terms from Charlie Neder, Dec 28 2018

A211238 Prime numbers p such that x^2 + x + p produces primes for x = 0..9 but not x = 10.

Original entry on oeis.org

11, 844427, 51448361, 86966771, 122983031, 960959381, 2426256797, 2911675511, 3013107257, 4778888351, 5221343711, 5258591537, 6430890287, 7156316591, 8518049207, 8828280941, 9467776751, 10687380227, 10783636931, 11856793337, 12128287007, 14431067237, 14772642497
Offset: 1

Views

Author

T. D. Noe, Apr 08 2012

Keywords

Comments

The first term is A164926(10).

Crossrefs

Programs

  • Mathematica
    lookfor = 10; t = {}; n = 0; While[Length[t] < 25, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t

A373823 Half the sum of the n-th maximal run of first differences of odd primes.

Original entry on oeis.org

2, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 6, 1, 3, 2, 1, 3, 2, 3, 4, 2, 1, 2, 1, 2, 7, 2, 3, 1, 5, 1, 6, 2, 6, 1, 5, 1, 2, 1, 12, 2, 1, 2, 3, 1, 5, 9, 1, 3, 2, 1, 5, 7, 2, 1, 2, 7, 3, 5, 1, 2, 3, 4, 6, 2, 3, 4, 2, 4, 5, 1, 5, 1, 3, 2, 3, 4, 2, 1, 2, 6, 4, 2, 4, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Halved run-sums of A001223.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs:
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with halved sums a(n).
		

Crossrefs

Halved run-sums of A001223.
For run-lengths we have A333254, run-lengths of run-lengths A373821.
Multiplying by two gives A373822.
A000040 lists the primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[3,1000],PrimeQ]]]/2

A107987 Odd composite numbers of the form p+2 where p is prime.

Original entry on oeis.org

9, 15, 21, 25, 33, 39, 45, 49, 55, 63, 69, 75, 81, 85, 91, 99, 105, 111, 115, 129, 133, 141, 153, 159, 165, 169, 175, 183, 195, 201, 213, 225, 231, 235, 243, 253, 259, 265, 273, 279, 285, 295, 309, 315, 319, 333, 339, 351, 355, 361, 369, 375, 381, 385, 391, 399
Offset: 1

Views

Author

Cino Hilliard, Jun 13 2005

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteCases[Prime[Range[2,80]]+2,?PrimeQ] (* _Harvey P. Dale, Aug 15 2013 *)
  • PARI
    sum2pr(n) = \\ Composite numbers of form p+2.
    { c=0; cp=0; forprime(x=3, n, cp++; y=x+2; if(isprime(y)==0, c++; print1(y",") ) ); print(); print(c/cp+.) }

Formula

a(n) = A049591(n) + 2 = A067774(n+1) + 2. - Amiram Eldar, Jul 05 2024

A210968 Smallest prime product p*q*r such that p + q + r = 2*n + 1.

Original entry on oeis.org

12, 20, 28, 63, 44, 52, 117, 68, 76, 171, 92, 207, 345, 116, 124, 279, 465, 148, 333, 164, 172, 387, 188, 423, 705, 212, 477, 795, 236, 244, 549, 915, 268, 603, 284, 292, 657, 1095, 316, 711, 332, 747, 1245, 356, 801, 1335, 1869, 388
Offset: 3

Views

Author

Omar E. Pol, Jun 29 2012

Keywords

Comments

From Robert Israel, May 24 2019: (Start)
If p is an odd prime, then a((p+3)/2) = 4*p.
If p > 2 is in A067774, then a((p+5)/2) = 9*p. (End)

Crossrefs

Programs

  • Maple
    N:= 100: # for a(3)..a(N)
    P:= select(isprime, [2,seq(i,i=3..2*N+1,2)]): nP:= nops(P):
    A:= Vector([infinity$(2*N+1)]):
    for i from 1 to nP while 2*P[i] <= 2*N+1 do
       p:= P[i];
       for j from i to nP while p+P[j] <= 2*N+1 do
         if p*P[j] < A[p+P[j]] then A[p+P[j]]:= p*P[j] fi
    od od:
    B:= Vector([infinity$(2*N+1)]):
    for i from 1 to nP while 3*P[i] <= 2*N+1 do
      p:= P[i];
      for x from 4 to 2*N+1-p do
        y:= p+x;
        if A[x]*p < B[y] then B[y]:= A[x]*p fi
    od od:
    [seq(B[2*i+1],i=3..N)]; # Robert Israel, May 24 2019

A211236 Prime numbers p such that x^2 + x + p produces primes for x = 0..7 but not x = 8.

Original entry on oeis.org

21557, 26681, 128981, 2073347, 3992201, 4889237, 6184637, 11900501, 21456047, 24598361, 33771581, 34864211, 50943791, 55793951, 56421347, 61218251, 67787537, 69726647, 76345121, 86145881, 90261707, 92865791, 99624647, 102960281, 108846161
Offset: 1

Views

Author

T. D. Noe, Apr 08 2012

Keywords

Comments

The first term is A164926(8).

Crossrefs

Programs

  • Mathematica
    lookfor = 8; t = {}; n = 0; While[Length[t] < 25, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
    Select[Prime[Range[6250000]],AllTrue[#+{2,6,12,20,30,42,56}, PrimeQ] && !PrimeQ[ #+72]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 04 2016 *)

A211237 Prime numbers p such that x^2 + x + p produces primes for x = 0..8 but not x = 9.

Original entry on oeis.org

51867197, 85776137, 93685301, 97122197, 107599757, 113575727, 118136267, 232728647, 316973621, 483040757, 564537761, 749930717, 840472307, 901288517, 1559839991, 1696818647, 2251028567, 2469604721, 2796607337, 3098938847, 3152692841, 3344410367
Offset: 1

Views

Author

T. D. Noe, Apr 08 2012

Keywords

Comments

The first term is A164926(9).

Crossrefs

Programs

  • Mathematica
    lookfor = 9; t = {}; n = 0; While[Length[t] < 25, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
    Select[Prime[Range[31*10^5,65*10^5]],AllTrue[#+{2,6,12,20,30,42,56,72},PrimeQ] && CompositeQ[#+90]&] (* The program generates the first 6 terms of the sequence. To generate more, increase the second Range constant. *) (* Harvey P. Dale, Nov 02 2021 *)

A211239 Prime numbers p such that x^2 + x + p produces primes for x = 0..10 but not x = 11.

Original entry on oeis.org

180078317, 1278189947, 1829187287, 5862143447, 6369321857, 7226006861, 12412643261, 50626299797, 53039299211, 72355485857, 74621287901, 76233413141, 81948881447, 115826556611, 129077263697, 137168442221, 137376420947, 146539105871, 168759510737, 181122284501
Offset: 1

Views

Author

T. D. Noe, Apr 09 2012

Keywords

Comments

The first term is A164926(11).

Crossrefs

Previous Showing 31-40 of 45 results. Next