cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A145340 a(n) = the maximum of d(p(n)-1) and d(p(n)+1), where d(m) is the number of divisors of m and p(n) is the n-th prime.

Original entry on oeis.org

2, 3, 4, 4, 6, 6, 6, 6, 8, 8, 8, 9, 8, 8, 10, 8, 12, 12, 8, 12, 12, 10, 12, 12, 12, 9, 8, 12, 12, 10, 12, 12, 8, 12, 12, 12, 12, 10, 16, 8, 18, 18, 14, 14, 12, 12, 16, 12, 12, 12, 12, 20, 20, 18, 9, 16, 16, 16, 12, 16, 8, 12, 12, 16, 16, 8, 16, 20, 12, 12, 12, 24, 10, 12, 16, 16, 16
Offset: 1

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[DivisorSigma[0, Prime[n]-1], DivisorSigma[0, Prime[n]+1]], {n, 1, 100}] (* Stefan Steinerberger, Oct 11 2008 *)

Extensions

More terms from Stefan Steinerberger and Ray Chandler, Oct 11 2008

A171669 Pell numbers sandwiched between two numbers having same number of divisors.

Original entry on oeis.org

12, 5741, 2744210, 15994428, 21300003689580, 723573111879672, 1111984844349868137938112, 293199986221627877463941823267862, 9960168529794442859224531878561050, 27749033099085295754434173207717704165, 66992092050551637663438906713182313772
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length[Divisors[n]]; a=1;b=0;c=0;lst={};Do[c=a+b+c;If[f[c-1]==f[c+1],AppendTo[lst,c]];a=b;b=c,{n,80}];lst

Extensions

a(8)-a(11) from Amiram Eldar, Aug 08 2024

A192220 Semiprimes s such that tau(s-1) = tau(s+1) where tau = A000005.

Original entry on oeis.org

4, 6, 9, 34, 51, 55, 86, 94, 129, 142, 183, 185, 202, 214, 218, 247, 249, 302, 341, 394, 415, 446, 471, 473, 535, 583, 634, 698, 723, 737, 807, 851, 905, 922, 926, 949, 1042, 1138, 1149, 1205, 1211, 1241, 1257, 1262, 1313, 1315, 1337, 1346, 1402, 1527, 1546, 1577, 1594, 1642, 1646, 1673, 1687
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], PrimeOmega[#] == 2 && Equal @@ DivisorSigma[0, # + {-1, 1}] &] (* Amiram Eldar, Jan 23 2025 *)
  • PARI
    isok(k) = bigomega(k) == 2 && numdiv(k-1) == numdiv(k+1); \\ Amiram Eldar, Jan 23 2025

Formula

A001358 INTERSECT A067888.

A356766 Least number k such that k and k+2 both have exactly 2n divisors, or -1 if no such number exists.

Original entry on oeis.org

3, 6, 18, 40, 127251, 198, 26890623, 918, 17298, 6640, 25269208984375, 3400, 3900566650390623, 640062, 8418573, 18088, 1164385682220458984373, 41650, 69528379848480224609373, 128464, 34084859373, 12164094, 150509919493198394775390625, 90270, 418514293125, 64505245696
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 26 2022

Keywords

Examples

			For n=1, numdiv(3) = numdiv(5) = 2 = 2*1, and no number < 3 satisfies this, hence a(1) = 3.
		

Crossrefs

Numbers k such that k and k+2 both have exactly m divisors: A001359 (m=2), A356742 (m=4), A356743 (m=6), A356744 (m=8).

Programs

Extensions

More terms from Jinyuan Wang, Aug 28 2022
Previous Showing 11-14 of 14 results.