cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A373824 Sorted positions of first appearances in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 11, 13, 29, 33, 45, 51, 57, 59, 69, 75, 105, 129, 211, 227, 301, 313, 321, 341, 407, 413, 447, 459, 537, 679, 709, 767, 1113, 1301, 1405, 1411, 1429, 1439, 1709, 1829, 1923, 2491, 2543, 2791, 2865, 3301, 3471, 3641, 4199, 4611, 5181, 5231, 6345, 6555
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Sorted positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3,...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted firsts of A373819 (run-lengths of A251092).
The unsorted version is A373825.
For antiruns we have A373826, unsorted A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths, run-lengths of A027833.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000],PrimeQ],#1+2==#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A121495 Numbers k such that k and k+1 are composite and squarefree.

Original entry on oeis.org

14, 21, 33, 34, 38, 57, 65, 69, 77, 85, 86, 93, 94, 105, 110, 114, 118, 122, 129, 133, 141, 142, 145, 154, 158, 165, 177, 182, 185, 186, 194, 201, 202, 205, 209, 213, 214, 217, 218, 221, 230, 237, 246, 253, 254, 258, 265, 266, 273, 285, 286, 290, 298, 301, 302
Offset: 1

Views

Author

Klaus Brockhaus, Aug 03 2006

Keywords

Comments

Numbers that are in A068780 and in A007674.

Examples

			21 = 3*7 and 22 = 2*11 are squarefree, so 21 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := CompositeQ[n] && SquareFreeQ[n]; Select[Range[300], q[#] && q[# + 1] &] (* Amiram Eldar, Feb 22 2021 *)
  • PARI
    for(n=1,310,if(!isprime(n)&&!isprime(n+1)&&issquarefree(n)&&issquarefree(n+1),print1(n,",")))

A144291 Triangular numbers n*(n-1)/2 with n and n -1 nonprime.

Original entry on oeis.org

0, 36, 45, 105, 120, 210, 231, 300, 325, 351, 378, 528, 561, 595, 630, 741, 780, 990, 1035, 1176, 1225, 1275, 1326, 1485, 1540, 1596, 1653, 1953, 2016, 2080, 2145, 2346, 2415, 2775, 2850, 2926, 3003, 3240, 3321, 3570, 3655, 3741, 3828, 4095, 4186, 4278
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 01 2008

Keywords

Examples

			If n=1, then 1*(1-1)/2=0=a(1).
If n=9, then 9*(9-1)/2=36=a(2).
etc.
		

Crossrefs

Programs

  • Maple
    p:= -1: Res:= NULL: count:= 0:
    while count < 100 do
      q:= p; p:= nextprime(p);
      if p - q > 2 then
        count:= count + p-q-2;
        Res:= Res, seq(k*(k+1)/2, k=q+1..p-2);
      fi
    od:
    Res; # Robert Israel, Jul 03 2018
  • Mathematica
    Reap[For[n = 1, n <= 100, n++, If[!PrimeQ[n] && !PrimeQ[n-1], Sow[n(n-1)/2] ] ] ][[2, 1]] (* Jean-François Alcover, Mar 27 2019 *)

Formula

a(n) = A000217(A068780(n-1)), n>1. - R. J. Mathar, Dec 10 2008

Extensions

3570 inserted by R. J. Mathar, Dec 10 2008

A174113 Smallest number k such that k, k+1, and k+2 are all divisible by an n-th power.

Original entry on oeis.org

48, 1375, 33614, 2590623, 26890623, 2372890624, 70925781248, 2889212890624, 61938212890624, 4497636425781248, 8555081787109375, 2665760081787109375, 98325140081787109375, 198816740081787109374, 11776267480163574218750, 872710687480163574218750, 50783354512519836425781248
Offset: 2

Views

Author

Michel Lagneau, Mar 08 2010

Keywords

Comments

Least of the smallest trio of consecutive numbers divisible by an n-th power.

Examples

			a(3) = 1375 because
  1375 =  11 * 5^3;
  1376 = 172 * 2^3;
  1377 =  51 * 3^3.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1375, p. 135, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 6 do: i:=0:for k from 1 to 3000000 while(i=0) do:j:=0:
    for a from 0 to 2 do: ii:=0:for m from 1 to 4  while(ii=0) do:p:=ithprime(m)^n:if irem(k+a,p)=0 then j:=j+1:ii:=1:else fi:od:od:if j=3 then i:=1:print(k):else fi:od:od:
  • PARI
    a(n)=my(ch,t,best=30^n);forprime(a=2, 29, forprime(b=2, 29, if(a==b,next); ch=chinese(Mod(0,a^n), Mod(-1,b^n)); if(lift(ch)>=best, next); forprime(c=2, 29, if(a==c || b==c, next); t=lift(chinese(ch, Mod(-2, c^n))); if(tCharles R Greathouse IV, Jan 16 2012

Formula

5^n < a(n) < 30^n. Can the lower bound be improved? - Charles R Greathouse IV, Jan 16 2012

Extensions

a(8)-a(18) from Charles R Greathouse IV, Jan 16 2012

A350460 Positive integers k such that if p is the next prime > k then p - k is prime.

Original entry on oeis.org

3, 5, 8, 9, 11, 14, 15, 17, 20, 21, 24, 26, 27, 29, 32, 34, 35, 38, 39, 41, 44, 45, 48, 50, 51, 54, 56, 57, 59, 62, 64, 65, 68, 69, 71, 74, 76, 77, 80, 81, 84, 86, 87, 90, 92, 94, 95, 98, 99, 101, 104, 105, 107, 110, 111, 114, 116, 120, 122, 124, 125, 128, 129
Offset: 1

Views

Author

Ryan Bresler, Jan 01 2022

Keywords

Comments

a(n) is only prime when n is the lesser of a twin prime pair (A001359). All other terms are composite.

Examples

			3 is a term because the next prime > 3 is 5, and 5 - 3 = 2, which is prime.
14 is a term because the next prime > 14 is 17, and 17 - 14 = 3, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[130], PrimeQ[NextPrime[#] - #] &] (* Amiram Eldar, Jan 01 2022 *)
  • PARI
    isok(k) = my(p=nextprime(k+1)); isprime(p-k); \\ Michel Marcus, Jan 01 2022
  • Python
    from sympy import isprime, nextprime
    def ok(n): return n > 0 and isprime(nextprime(n) - n)
    print([k for k in range(130) if ok(k)]) # Michael S. Branicky, Jan 01 2022
    

A367647 Irregular triangle read by rows in which row n lists the positive values k such that there are no primes between k*n and k*(n + 1), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 3, 4, 1, 2, 3, 2, 4, 2, 9, 1, 1, 6, 2, 3, 2, 7, 3, 5, 2, 6, 1, 6, 7, 10, 1, 3, 4, 2, 4, 5, 1, 2, 5, 1, 2, 3, 8, 1, 7, 1, 2, 2, 3, 5, 4, 7, 11, 3, 4, 2, 3, 1, 2, 10, 1, 4, 9, 1, 2, 6, 1, 4, 15, 4, 6, 2, 5, 8, 1, 2, 3, 4, 1, 3, 2, 3, 5, 8, 3, 5, 2, 4, 7, 2, 5, 1, 3, 12, 1, 2, 2, 4, 7
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 25 2023

Keywords

Examples

			Triangle begins:
1;
1;
1;
2;
1;
4;
2;
1, 3, 4;
1;
2;
3;
2, 4;
2, 9;
1;
1, 6;
2, 3;
2, 7;
3, 5;
2, 6;
1, 6, 7, 10;
1, 3, 4;
2;
4, 5;
1, 2, 5;
1, 2, 3, 8.
		

Crossrefs

Previous Showing 21-26 of 26 results.