cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A284327 a(n) is the least positive integer such that n^2 + a(n)^2 and n^2 + (a(n) - 2)^2 are primes.

Original entry on oeis.org

1, 1, 10, 1, 4, 1, 10, 5, 16, 1, 6, 25, 10, 1, 4, 1, 10, 7, 16, 1, 46, 15, 20, 1, 6, 1, 22, 15, 6, 13, 6, 5, 190, 11, 18, 1, 30, 15, 46, 1, 46, 25, 10, 21, 16, 21, 10, 37, 6, 19, 16, 5, 12, 1, 6, 1, 52, 5, 26, 31, 26, 45, 40, 11, 4, 1, 20, 7, 196, 19, 16
Offset: 1

Views

Author

Lars-Erik Svahn, Mar 25 2017

Keywords

Comments

n + i*a(n) and n + i*(a(n) - 2) are Gaussian twin primes.
If n^2 + 1 is a prime then a(n) = 1 else a(n) = A284211(n) + 2.

Examples

			a(1) = 1 since 1^2 + 1^2 = 2 and 1^2 + (1 - 2)^2 = 2 are primes.
		

Crossrefs

Programs

  • Mathematica
    Rest@ FoldList[Module[{k = 1}, While[Times @@ Boole@ Map[PrimeQ, {#2^2 + k^2, #2^2 + (k - 2)^2}] < 1, k++]; k] &, 1, Range@ 71] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    a(n) = k=0; while (! (isprime(n^2+k^2) && isprime(n^2+(k-2)^2)), k++); k; \\ Michel Marcus, Mar 25 2017
    
  • Python
    from sympy import isprime
    def a(n):
        k=0
        while True:
            if isprime(n**2 + k**2) and isprime(n**2 + (k - 2)**2): return k
            else: k+=1
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 31 2017

Formula

a(n) = 1 for n in A005574. - Michel Marcus, Mar 31 2017

A242553 Least number k such that n^8 + k^8 is prime.

Original entry on oeis.org

1, 1, 10, 1, 6, 5, 12, 13, 16, 3, 24, 7, 2, 3, 8, 9, 4, 17, 4, 7, 2, 3, 20, 7, 8, 19, 10, 3, 10, 19, 14, 17, 32, 11, 8, 25, 6, 25, 40, 7, 10, 43, 16, 5, 68, 7, 30, 5, 8, 19, 58, 17, 26, 17, 2, 11, 10, 3, 4, 49, 6, 71, 22, 15, 14, 47, 30, 9, 2, 19, 6, 19, 6, 5, 28, 13, 2
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

If a(n) = 1, then n is in A006314.

Examples

			10^8+1^8 = 100000001 is not prime. 10^8+2^8 = 100000256 is not prime. 10^8+3^8 = 100006561 is prime. Thus, a(10) = 3.
		

Crossrefs

Programs

  • Mathematica
    lnk[n_]:=Module[{c=n^8,k=1},While[CompositeQ[c+k^8],k++];k]; Array[lnk,80] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 12 2020 *)
  • PARI
    a(n)=for(k=1,oo,if(ispseudoprime(n^8+k^8),return(k)));
  • Python
    import sympy
    from sympy import isprime
    def a(n):
      for k in range(10**4):
        if isprime(n**8+k**8):
          return k
    n = 1
    while n < 100:
      print(a(n))
      n += 1
    

A242554 Least number k such that n^16 + k^16 is prime.

Original entry on oeis.org

1, 1, 4, 3, 6, 5, 6, 7, 22, 13, 16, 5, 8, 5, 14, 11, 10, 7, 16, 31, 8, 9, 10, 11, 38, 29, 10, 9, 22, 61, 20, 5, 4, 3, 16, 11, 6, 25, 28, 7, 6, 17, 16, 1, 46, 9, 58, 61, 22, 41, 92, 3, 14, 19, 14, 23, 56, 37, 20, 109, 6, 121, 10, 39, 4, 67, 34, 11, 26, 9, 30, 11, 12, 1
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

If a(n) = 1, then n is in A006313.

Examples

			4^16+1^16 = 4294967297 is not prime. 4^16+2^16 = 4295032832 is not prime. 4^16+3^16 = 4338014017 is prime. Thus, a(4) = 3.
		

Crossrefs

Programs

  • PARI
    a(n)=for(k=1,oo,if(ispseudoprime(n^16+k^16),return(k)));
  • Python
    import sympy
    from sympy import isprime
    def a(n):
      for k in range(10**4):
        if isprime(n**16+k**16):
          return k
    n = 1
    while n < 100:
      print(a(n))
      n += 1
    

A242555 Least number k such that k^32 + n^32 is prime.

Original entry on oeis.org

1, 29, 40, 33, 34, 131, 50, 9, 8, 11, 10, 13, 12, 97, 166, 221, 200, 13, 10, 61, 176, 23, 22, 65, 94, 151, 352, 87, 2, 1, 38, 39, 4, 5, 48, 137, 18, 11, 4, 3, 60, 55, 40, 9, 106, 33, 10, 29, 134, 7, 44, 33, 50, 1, 38, 5, 148, 37, 2, 41, 10, 11, 94, 75, 4, 5, 100, 5, 22
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

If a(n) = 1, then n is in A006315.

Crossrefs

Programs

  • Mathematica
    lnk[n_]:=Module[{k=1,n32=n^32},While[!PrimeQ[n32+k^32],k++];k]; Array[ lnk,70] (* Harvey P. Dale, Apr 26 2018 *)
  • PARI
    a(n)=for(k=1,oo,if(ispseudoprime(n^32+k^32),return(k)));
  • Python
    import sympy
    from sympy import isprime
    def a(n):
      for k in range(10**4):
        if isprime(n**32+k**32):
          return k
    n = 1
    while n < 100:
      print(a(n))
      n += 1
    

A242556 Least number k such that k^64 + n^64 is prime.

Original entry on oeis.org

1, 37, 32, 39, 118, 13, 16, 11, 154, 41, 8, 29, 6, 17, 64, 7, 14, 107, 66, 63, 58, 87, 38, 397, 282, 69, 32, 129, 12, 67, 210, 3, 200, 227, 82, 55, 2, 7, 4, 541, 10, 103, 64, 167, 286, 71, 60, 593, 6, 459, 14, 3, 2, 91, 4, 81, 98, 21, 164, 47, 36, 51, 10, 15, 84, 19, 30
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

If a(n) = 1, then n is in A006316.

Crossrefs

Programs

  • Mathematica
    lnk[n_]:=Module[{c=n^64,k=1},While[!PrimeQ[c+k^64],k++];k]; Array[lnk,70] (* Harvey P. Dale, Oct 21 2017 *)
  • PARI
    a(n)=for(k=1,oo,if(ispseudoprime(n^64+k^64),return(k)));
  • Python
    import sympy
    from sympy import isprime
    def a(n):
      for k in range(10**4):
        if isprime(n**64+k**64):
          return k
    n = 1
    while n < 100:
      print(a(n))
      n += 1
    

A242557 Least number k such that n^128+k^128 is prime.

Original entry on oeis.org

1, 113, 106, 259, 304, 85, 212, 135, 158, 47, 62, 985, 84, 47, 518, 485, 178, 169, 106, 27, 88, 139, 632, 47, 44, 643, 20, 209, 606, 1529, 32, 31, 1094, 139, 754, 647, 38, 37, 262, 69, 94, 631, 90, 25, 38, 195, 10, 277, 232, 187, 554, 189, 10, 47, 216, 131, 1132, 173, 390
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

If a(n) = 1, then n is in A056994.

Crossrefs

Programs

  • Mathematica
    lnk[n_]:=Module[{c=n^128,k},k=If[EvenQ[c],1,2];While[!PrimeQ[c+ k^128],k = k+2];k]; Join[{1},Array[lnk,60,2]] (* Harvey P. Dale, Mar 17 2015 *)
  • PARI
    a(n)=for(k=1,10^4,if(ispseudoprime(n^128+k^128),return(k)));
    n=1;while(n<100,print(a(n));n+=1)
  • Python
    import sympy
    from sympy import isprime
    def a(n):
        for k in range(10**4):
            if isprime(n**128+k**128):
                return k
    n = 1
    while n < 100:
        print(a(n))
        n += 1
    

A284376 a(n) is the least nonnegative integer such that n + i*a(n) is a Gaussian prime.

Original entry on oeis.org

3, 1, 1, 0, 1, 2, 1, 0, 3, 4, 1, 0, 7, 2, 1, 2, 1, 2, 5, 0, 1, 4, 5, 0, 1, 4, 1, 2, 5, 4, 11, 0, 3, 2, 5, 2, 1, 2, 3, 10, 1, 4, 5, 0, 9, 2, 5, 0, 13, 4, 7, 4, 3, 10, 1, 4, 1, 2, 3, 0, 13, 10, 3, 32, 9, 2, 1, 0, 5, 10, 3, 0, 5, 2, 1, 4, 5, 10, 7, 0, 7, 4, 3, 0, 1, 2, 9, 2, 3, 4, 1, 4, 7, 8, 1, 2, 5, 2, 3, 4, 3
Offset: 0

Views

Author

Lars-Erik Svahn, Mar 25 2017

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      for k from 0 do if GaussInt:-GIprime(n+I*k) then return k fi od
    end proc:
    map(f, [$0..100]); # Robert Israel, Apr 07 2017
  • Mathematica
    Table[k = 0; While[! PrimeQ[n + I k, GaussianIntegers -> True], k++]; k, {n, 0, 100}] (* Michael De Vlieger, Mar 29 2017 *)

Formula

From Michel Marcus, Mar 30 2017: (Start)
a(n) = 0 for n in A002145.
a(n) = 1 for n in A005574.
(End)
a(n) = A069003(n) if n is not in A002145. - Robert Israel, Apr 07 2017

A242552 Least number k such that n^4 + k^4 is prime.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 2, 7, 2, 13, 4, 5, 8, 1, 2, 5, 2, 1, 10, 15, 2, 1, 6, 3, 2, 1, 12, 7, 12, 5, 14, 1, 6, 7, 2, 3, 14, 9, 2, 5, 10, 21, 2, 1, 4, 1, 2, 7, 2, 11, 6, 1, 14, 1, 2, 7, 2, 11, 2, 11, 8, 23, 16, 29, 12, 3, 10, 27, 2, 5, 8, 1, 8, 3, 20, 17, 2, 1, 10, 1, 10
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Comments

If a(n) = 1, then n is in A000068.

Examples

			8^4+1^4 = 4097 is not prime. 8^4+2^4 = 4112 is not prime. 8^4+3^4 = 4177 is prime. Thus, a(8) = 3.
		

Crossrefs

Programs

  • PARI
    a(n)=for(k=1,oo,if(ispseudoprime(n^4+k^4),return(k)));
  • Python
    import sympy
    from sympy import isprime
    def a(n):
      for k in range(10**4):
        if isprime(n**4+k**4):
          return k
    n = 1
    while n < 100:
      print(a(n))
      n += 1
    
Previous Showing 11-18 of 18 results.