A217119
Greatest number (in decimal representation) with n nonprime substrings in base-9 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
47, 428, 1721, 6473, 14033, 35201, 58961, 58967, 465743, 530701, 530710, 1733741, 4250788, 4723108, 4776398, 25051529, 37327196, 42450640, 42986860, 42987589, 42996409, 225463817, 382055767, 382571822, 386888308, 386888419, 387356789
Offset: 0
a(0) = 47, since 47 = 52_9 (base-9) is the greatest number with zero nonprime substrings in base-9 representation.
a(1) = 428 = 525_9 has 1 nonprime substring in base-9 representation (= 525_9). All the other base-9 substrings (2, 5, 5, 25, 52) are prime substrings. 525_9 is the greatest number with 1 nonprime substring.
a(2) = 1721 = 2322_9 has 10 substrings in base-9 representation, exactly 2 of them are nonprime substrings (22_9 and 23_3=8), and there is no greater number with 2 nonprime substrings in base-9 representation.
a(7) = 58967= 88788_9 has 15 substrings in base-9 representation, exactly 7 of them are nonprime substrings (4-times 8, 2-times 88, and 8788), and there is no greater number with 7 nonprime substrings in base-9 representation.
A069488
Primes > 100 in which every substring of length 2 is also prime.
Original entry on oeis.org
113, 131, 137, 173, 179, 197, 311, 313, 317, 373, 379, 419, 431, 479, 613, 617, 619, 673, 719, 797, 971, 1117, 1171, 1319, 1373, 1973, 1979, 2311, 2371, 2971, 3119, 3137, 3719, 3797, 4111, 4373, 6113, 6131, 6173, 6197, 6719, 6737
Offset: 1
3719 is a term as the three substrings of length 2, i.e., 37, 71 and 19, are all prime.
-
a069488 n = a069488_list !! (n-1)
a069488_list = filter f $ dropWhile (<= 100) a038618_list where
f x = x < 10 || a010051 (x `mod` 100) == 1 && f (x `div` 10)
-- Reinhard Zumkeller, Apr 07 2014
-
Do[ If[ Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 2, 1]]]] == {True}, Print[ Prime[n]]], {n, PrimePi[100] + 1, 500}]
A069490
Primes > 1000 in which every substring of lengths 2 and 3 are also prime.
Original entry on oeis.org
1373, 3137, 3797, 6131, 6173, 6197, 9719, 11311, 11317, 17971, 31379, 61379, 71971, 113131, 113173, 113797, 131311, 131317, 131797, 179719, 317971, 431311, 431797, 617971, 1131131, 1131379, 1311311, 1313797, 1317971, 3131137, 3131311
Offset: 1
11317 is a term as the substrings of length 2, i.e., 11, 13, 31, 17 and the three substrings of length 3, i.e., 113, 131 and 317 are all prime.
-
import Data.Set (fromList, deleteFindMin, union)
a069490 n = a069490_list !! (n-1)
a069490_list = f $ fromList [1..9] where
f s | m < 1000 = f s''
| h m && a010051' m == 1 = m : f s''
| otherwise = f s''
where s'' = union s' $ fromList $ map (+ (m * 10)) [1, 3, 7, 9]
(m, s') = deleteFindMin s
h x = x < 100 && a010051' x == 1 ||
a010051' (x `mod` 1000) == 1 &&
a010051' (x `mod` 100) == 1 && h (x `div` 10)
-- Reinhard Zumkeller, Jun 08 2015
-
Do[ If[ Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 2, 1]]]] == Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 3, 1]]]] == {True}, Print[ Prime[n]]], {n, PrimePi[1000] + 1, 10^5}]
Select[Prime[Range[169,226000]],AllTrue[FromDigits/@Flatten[Table[ Partition[ IntegerDigits[ #],k,1],{k,{2,3}}],1],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 02 2021 *)
A213304
Smallest number with n nonprime substrings (Version 3: substrings with leading zeros are counted as nonprime if the corresponding number is not a prime).
Original entry on oeis.org
2, 1, 10, 14, 101, 104, 144, 1001, 1014, 1044, 1444, 10010, 10014, 10144, 10444, 14444, 100120, 100104, 100144, 101444, 104444, 144444, 1000144, 1001040, 1001044, 1001444, 1014444, 1044444, 1444444, 10001044, 10001444, 10010404, 10010444, 10014444, 10144444, 10444444, 14444444, 100010404, 100010444, 100014444, 100104044, 100104444, 100144444, 101444444, 104444444, 144444444
Offset: 0
a(0)=2, since 2 is the least number with zero nonprime substrings.
a(1)=1, since 1 has 1 nonprime substrings.
a(2)=10, since 10 is the least number with 2 nonprime substrings, these are 1 and 10 ('0' will not be counted).
a(3)=14, since 14 is the least number with 3 nonprime substrings, these are 1 and 4 and 14. 10, 11 and 12 only have 2 such substrings.
A213303
Smallest number with n nonprime substrings (Version 2: substrings with leading zeros are counted as nonprime if the corresponding number is > 0).
Original entry on oeis.org
2, 1, 10, 14, 101, 104, 144, 1001, 1014, 1044, 1444, 10010, 10014, 10144, 10444, 14444, 100101, 100104, 100144, 101444, 104444, 144444, 1000144, 1001014, 1001044, 1001444, 1014444, 1044444, 1444444, 10001044, 10001444, 10010144, 10010444, 10014444, 10144444, 10444444, 14444444, 100010144
Offset: 0
a(0)=2, since 2 is the least number with zero nonprime substrings.
a(1)=1, since 1 has 1 nonprime substrings.
a(2)=10, since 10 is the least number with 2 nonprime substrings, these are 1 and 10 ('0' will not be counted).
a(3)=14, since 14 is the least number with 3 nonprime substrings, these are 1 and 4 and 14. 10, 11 and 12 only have 2 such substrings.
A213306
Minimal prime with n nonprime substrings (Version 2: substrings with leading zeros are counted as nonprime if the corresponding number is > 0).
Original entry on oeis.org
2, 13, 11, 103, 101, 149, 1009, 1021, 1049, 1481, 10039, 10069, 10169, 11681, 14669, 100109, 100189, 100169, 101681, 104681, 146669, 1000669, 1001041, 1001081, 1004669, 1014469, 1046849, 1468469, 10001081, 10004669, 10010851
Offset: 0
a(0) = 2, since 2 is the least number with zero nonprime substrings.
a(1) = 13, since 13 has 1 nonprime substring (=’1’).
a(2) = 11, since 11 is the least number with 2 nonprime substrings (= 2 times ‘1’).
a(3) = 103, since 103 is the least number with 3 nonprime substrings, these are ‘1’ and ‘10’ and ‘03’ (‘0’ is not a valid substring in version 2).
A213307
Minimal prime with n nonprime substrings (Version 3: substrings with leading zeros are counted as nonprime if the corresponding number is not a prime).
Original entry on oeis.org
2, 13, 11, 127, 101, 149, 1009, 1063, 1049, 1481, 10091, 10069, 10169, 11681, 14669, 100129, 100189, 100169, 101681, 104681, 146669, 1000669, 1001219, 1001081, 1004669, 1014469, 1046849, 1468469, 10001081, 10004669, 10010851
Offset: 0
a(0) = 2, since 2 is the least number with zero nonprime substrings.
a(1) = 13, since 13 there is one nonprime substring (=1).
a(2) = 11, since 11 is the least number with 2 nonprime substrings (2 times ‘1’).
a(3) = 127, since 127 is the least number with 3 nonprime substrings, these are 1 and 12 and 27 (according to version 3).
A217103
Minimal number (in decimal representation) with n nonprime substrings in base-3 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
2, 1, 3, 4, 14, 9, 34, 29, 30, 27, 89, 88, 83, 84, 81, 268, 251, 250, 248, 245, 243, 752, 754, 746, 740, 734, 731, 729, 2237, 2239, 2210, 2203, 2198, 2192, 2189, 2187, 6632, 6611, 6614, 6584, 6577, 6569, 6563, 6564, 6561, 19814, 19754, 19733, 19736, 19706
Offset: 0
a(0) = 2, since 2 = 2_3 is the least number with zero nonprime substrings in base-3 representation.
a(1) = 1, since 1 = 1_3 is the least number with 1 nonprime substring in base-3 representation.
a(2) = 3, since 3 = 10_3 is the least number with 2 nonprime substrings in base-3 representation (0 and 1).
a(3) = 4, since 4 = 11_3 is the least number with 3 nonprime substrings in base-3 representation (1, 1 and 11).
a(4) = 14, since 14 = 112_3 is the least number with 4 nonprime substrings in base-3 representation, these are 1, 1, 11 and 112 (remember, that substrings with leading zeros are considered to be nonprime).
a(7) = 29, since 29 = 1002_3 is the least number with 7 nonprime substrings in base-3 representation, these are 0, 0, 1, 00, 02, 002 and 100 (remember, that substrings with leading zeros are considered to be nonprime, 2_3 = 2, 10_3 = 3 and 1002_3 = 29 are base-3 prime substrings).
A217303
Minimal natural number (in decimal representation) with n prime substrings in base-3 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
1, 2, 5, 11, 17, 23, 50, 104, 71, 152, 215, 395, 476, 701, 719, 1367, 1934, 1448, 4127, 4121, 4346, 5822, 12302, 12383, 17468, 25505, 32066, 39113, 51749, 91040, 111509, 110798, 117359, 157211, 332396, 334358, 465092, 333791, 819386, 865232, 1001375, 1396673
Offset: 0
a(1) = 2 = 2_3, since 2 is the least number with 1 prime substring in base-3 representation.
a(2) = 5 = 12_3, since 5 is the least number with 2 prime substrings in base-3 representation (2_3 and 12_3).
a(3) = 11 = 102_3, since 11 is the least number with 3 prime substrings in base-3 representation (2_3, 10_3, and 102_3).
a(5) = 23 = 212_3, since 23 is the least number with 5 prime substrings in base-3 representation (2 times 2_3, 12_3=5, 21_3=19, and 212_3=23).
a(7) = 104 = 10212_3, since 104 is the least number with 7 prime substrings in base-3 representation (2 times 2_3, 10_3=3, 12_3=5, 21_3=19, 102_3=11, and 212_3=23).
A217308
Minimal natural number (in decimal representation) with n prime substrings in base-8 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
1, 2, 11, 19, 83, 107, 157, 669, 751, 1259, 4957, 6879, 6011, 14303, 47071, 48093, 65371, 188143, 327515, 440287, 384751, 1029883, 2604783, 2948955, 3602299, 6946651, 20304733, 23846747, 23937003, 23723867, 57278299, 167689071, 175479547, 191496027, 233824091
Offset: 0
a(1) = 2 = 2_8, since 2 is the least number with 1 prime substring in base-8 representation.
a(2) = 11 = 13_8, since 11 is the least number with 2 prime substrings in base-8 representation (3_8 and 13_8).
a(3) = 19 = 23_8, since 19 is the least number with 3 prime substrings in base-8 representation (2_8, 3_8, and 23_8).
a(4) = 83 = 123_8, since 83 is the least number with 4 prime substrings in base-8 representation (2_8, 3_8, 23_8=19, and 123_8=83).
a(8) = 751 = 1357_8, since 751 is the least number with 8 prime substrings in base-8 representation (3_8, 5_8, 7_8, 13_8=11, 35_8=29, 57_8=47, 357_8=239, and 1357_8=751).
Comments