cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A173560 Numbers m such that (6*m)^5 is a sum of a twin prime pair.

Original entry on oeis.org

16, 44, 84, 135, 161, 631, 849, 880, 1035, 1086, 1721, 1815, 2155, 2704, 2871, 2975, 3011, 3159, 3220, 3365, 3390, 3669, 3996, 4075, 4704, 4761, 5025, 5090, 5299, 5585, 5640, 5970, 6314, 6606, 7035, 7785, 8104, 8129, 8610, 9116, 9665, 9966, 10249
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Feb 21 2010

Keywords

Comments

The twin prime pairs are characterized in A173255.
No such m has least significant digit (LSD) e = 2 or 7 because a = (6 * e)^5/2 - 1, representing the smaller of the twin primes, would get LSD 5.
No such m has LSD e = 3 or 8, because a+2 = (6 * e)^5/2 + 1, representing the larger prime, would get LSD 5.
The primes in this sequence here are a(6) = 631 = prime(115), a(11) = 1721 = prime(268),
a(17) = 3011 = prime(432), a(49) = 10859 = prime(1320), ...

Examples

			p = (6 * 16)^5/2 - 1 = 4076863487 = A000040(193435931); p+2 = A000040(193435932), so a(1) = 16.
p = (6 * 44)^5/2 - 1 = 641194278911 = A000040(24524572848); p+2 = A000040(24524572849), so a(2) = 44.
p = (6 * 84)^5/2 - 1 = 16260080320511 = A000040(553382827197); p+2 = A000040(553382827198), so a(3) = 84.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[700],AllTrue[((6*#)^5-2)/2+{0,2},PrimeQ]&] (* Harvey P. Dale, Dec 21 2024 *)
  • PARI
    isok(m) = {my(k = (6*m)^5/2); isprime(k-1) && isprime(k+1);} \\ Amiram Eldar, Jul 19 2025

A226599 Numbers which are the sum of two squared primes in exactly four ways (ignoring order).

Original entry on oeis.org

10370, 10730, 11570, 12410, 13130, 19610, 22490, 25010, 31610, 38090, 38930, 39338, 39962, 40970, 41810, 55250, 55970, 59330, 59930, 69530, 70850, 73730, 76850, 77090, 89570, 98090, 98930, 103298, 118898, 125450, 126290, 130730, 135218, 139490
Offset: 1

Views

Author

Henk Koppelaar, Jun 13 2013

Keywords

Comments

It appears that all first differences are divisible by 24. - Zak Seidov, Jun 14 2013

Examples

			10370 = 13^2 + 101^2 = 31^2 + 97^2 = 59^2 + 83^2 = 71^2 + 73^2.
10730 = 11^2 + 103^2 = 23^2 + 101^2 = 53^2 + 89^2 = 67^2 + 79^2.
		

References

  • Stan Wagon, Mathematica in Action, Springer, 2000 (2nd ed.), Ch. 17.5, pp. 375-378.

Crossrefs

Cf. A054735 (restricted to twin primes), A037073, A069496.
Cf. A045636 (sum of two squared primes is a superset).
Cf. A214511 (least number having n representations).
Cf. A225104 (numbers having at least three representations is a superset).
Cf. A226539, A226562 (sums decomposed in exactly two and three ways).

Programs

  • Maple
    Prime2PairsSum := s -> select(x ->`if`(andmap(isprime, x), true, false),
       numtheory:-sum2sqr(s)):
    for n from 2 to 10^6 do
      if nops(Prime2PairsSum(n)) = 4 then print(n, Prime2PairsSum(n)) fi;
    od;
  • Mathematica
    (* Assuming mod(a(n),24) = 2 *) Reap[ For[ k = 2, k <= 2 + 240000, k = k + 24, pr = Select[ PowersRepresentations[k, 2, 2], PrimeQ[#[[1]]] && PrimeQ[#[[2]]] &]; If[Length[pr] == 4 , Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jun 14 2013 *)

Formula

a(n) = p^2 + q^2; p, q are (not necessarily different) primes

A086776 Smaller member of a prime pair (n, n+6) with a square sum.

Original entry on oeis.org

5, 47, 6047, 24197, 31247, 51197, 84047, 151247, 204797, 273797, 387197, 470447, 708047, 806447, 938447, 1804997, 1920797, 1940447, 2060447, 2121797, 2184047, 3150047, 3699197, 6771197, 7411247, 7644047, 8404997, 8652797, 10170047
Offset: 1

Views

Author

Jason Earls, Aug 03 2003

Keywords

Examples

			6047 is a term because it is the smaller member of the prime pair (6047, 6053) and 6047 + 6053 = 12100 = 110^2.
		

Crossrefs

Extensions

Offset 1 from Alois P. Heinz, Jul 27 2019
Previous Showing 11-13 of 13 results.