cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A074340 a(1) = 5; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

5, 9, 23, 37, 39, 47, 57, 97, 119, 187, 257, 271, 273, 281, 309, 367, 449, 529, 687, 759, 933, 1031, 1131, 1237, 1263, 1343, 1731, 1861, 2177, 2337, 2589, 2607, 2743, 3191, 3199, 3281, 3499, 3807, 3867, 4133, 6079, 6189, 6593, 7207, 7479, 7523, 8569, 8571
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 5; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)
  • Python
    from sympy import isprime
    def aupton(terms):
      alst, astr = [5], "5"
      while len(alst) < terms:
        an = alst[-1] + 2
        while an%5 ==0 or not isprime(int(astr + str(an))): an += 2
        alst, astr = alst + [an], astr + str(an)
      return alst
    print(aupton(48)) # Michael S. Branicky, May 09 2021

Extensions

More terms from Robert G. Wilson v, Aug 05 2005

A074341 a(1) = 4; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

4, 7, 9, 11, 81, 87, 109, 117, 123, 129, 201, 389, 429, 441, 771, 811, 831, 1037, 1143, 1299, 1569, 1581, 1803, 1837, 1943, 2053, 2171, 2379, 2431, 3201, 3437, 3489, 3723, 3841, 4289, 4801, 5523, 6249, 7083, 7467, 7749, 8171, 9073, 9333, 9683, 9781, 10833
Offset: 1

Views

Author

Zak Seidov, Sep 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 4; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 47}] (* Robert G. Wilson v *)
    nxt[{j_,a_}]:=Module[{k=a+1},While[!PrimeQ[j*10^IntegerLength[k]+k],k++];{j*10^IntegerLength[k]+k,k}]; NestList[nxt,{4,4},50][[;;,2]] (* Harvey P. Dale, Apr 07 2025 *)

Extensions

More terms from Robert G. Wilson v, Aug 05 2005

A111525 a(1) = 10; a(n) = smallest number such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

10, 1, 3, 3, 3, 29, 1, 3, 3, 11, 9, 7, 23, 61, 11, 3, 91, 137, 7, 11, 31, 93, 17, 9, 273, 51, 397, 9, 99, 41, 111, 129, 111, 801, 109, 131, 297, 37, 621, 21, 807, 143, 87, 57, 231, 187, 53, 169, 77, 613, 867, 41, 199, 773, 523, 227, 27, 499, 171, 329, 67, 483, 393, 179
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 10; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 63}]

A069621 a(1) = 9; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n). Alternate left and right concatenation yielding primes.

Original entry on oeis.org

9, 97, 197, 1973, 31973, 319733, 3319733, 331973311, 6331973311, 633197331131, 5633197331131, 563319733113127, 6563319733113127, 65633197331131279, 3465633197331131279, 346563319733113127933, 18346563319733113127933
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2002

Keywords

Examples

			a(4) = 1973 starting with a(3) =197 and a(5) = 31973 ending in a(4) = 1973.
		

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

A264738 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is triangular (m*(m+1)/2).

Original entry on oeis.org

1, 5, 3, 181, 88028, 21235051740, 567915201450407862150, 344114043575504570099838908555592732193828, 2517587700386740093077985318903210991887701682095104296188806385635425261250603998340
Offset: 1

Views

Author

Anders Hellström, Nov 22 2015

Keywords

Crossrefs

Programs

  • PARI
    istriangular(n)=ispolygonal(n,3)
    first(m)=my(v=vector(m),s="1");v[1]=1;for(i=2,m,n=1;while(!istriangular(eval(concat(s,Str(n)))),n++);v[i]=n;s=concat(s,Str(n)));v

Extensions

a(6)-a(9) from Jon E. Schoenfield, Nov 22 2015

A069613 a(1) = 1; a(2n) is smallest prime starting with a(2n-1) and a number with no insignificant zeros, and a(2n+1) is smallest prime ending in a(2n-1). Alternate left and right concatenation yielding primes.

Original entry on oeis.org

1, 11, 211, 2111, 22111, 2211127, 12211127, 122111279, 14122111279, 1412211127927, 211412211127927, 21141221112792721, 1321141221112792721, 132114122111279272169, 27132114122111279272169, 2713211412211127927216947
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2002

Keywords

Comments

a(6) is not 2211109 because the 0 in this number is considered insignificant (for comparison, the 0 in 22111109 would be significant, but this value is not the smallest possible extension of a(5)=22111). - Sean A. Irvine, May 07 2024

Examples

			a(4) = 2111 starting with a(3) =211 and a(5) = 22111 ending in a(4) = 2111.
		

Crossrefs

Extensions

More terms from Robert Gerbicz, Aug 27 2002
Name clarified by Sean A. Irvine, May 07 2024

A069615 a(1) = 3; a(2n) = smallest prime starting (in the most significant digits) with a(2n-1) (i.e., as a right concatenation of a(2n-1) and a number with no insignificant zeros); a(2n+1) = smallest prime ending in (the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.

Original entry on oeis.org

3, 31, 131, 1319, 21319, 213193, 12213193, 122131939, 1122131939, 112213193957, 27112213193957, 271122131939573, 3271122131939573, 327112213193957339, 2327112213193957339, 232711221319395733969, 13232711221319395733969
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2002

Keywords

Examples

			a(4) = 1319 starting with a(3) = 131 and a(5) = 21319 ending in a(4) = 1319.
		

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

A069616 a(1) = 4; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.

Original entry on oeis.org

4, 41, 241, 2411, 32411, 324113, 6324113, 63241133, 1563241133, 15632411339, 815632411339, 81563241133919, 281563241133919, 2815632411339191, 322815632411339191, 32281563241133919151, 432281563241133919151
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2002

Keywords

Examples

			a(4) = 2411 starting with a(3) =241 and a(5) = 32411 ending in a(4) = 2411.
		

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

A069617 a(1) = 5; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.

Original entry on oeis.org

5, 53, 353, 3533, 33533, 3353321, 113353321, 1133533213, 101133533213, 10113353321311, 310113353321311, 3101133533213117, 143101133533213117, 14310113353321311739, 314310113353321311739, 314310113353321311739103
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2002

Keywords

Examples

			a(4) = 3533 starting with a(3) = 353 and a(5) = 33533 ending in a(4) = 3533.
		

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

A069618 a(1) = 6; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.

Original entry on oeis.org

6, 61, 461, 46133, 246133, 2461337, 22461337, 224613371, 12224613371, 1222461337117, 151222461337117, 15122246133711733, 615122246133711733, 615122246133711733213, 9615122246133711733213, 961512224613371173321349
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2002

Keywords

Examples

			a(4) = 46133 starting with a(3) = 461 and a(5) = 246133 in a(4) = 46133.
		

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
Previous Showing 11-20 of 23 results. Next