cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A069693 Triangular numbers with either no internal digits or all internal digits are 0.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 300, 406, 703, 903, 3003, 4005, 8001
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Examples

			The internal digits of 3003 are "00", which are both 0. 15 has no internal digits.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {0}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

Extensions

Corrected by Sascha Kurz, Jan 02 2003

A069700 Triangular numbers with internal digits 9.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 190, 496, 595, 990, 5995
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {9}, Print[n(n + 1)/2]], {n, 14, 10^6}]

A069695 Triangular numbers with internal digits 3.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 136, 231, 435, 630, 333336
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {3}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

Extensions

Extended by Robert G. Wilson v, Apr 07 2002

A273460 Numbers n such that sum of the divisors of n (except 1 and n) is equal to the product of the digits of n.

Original entry on oeis.org

98, 101, 103, 107, 109, 307, 329, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1201, 1301, 1303, 1307, 1409, 1601, 1607, 1609, 1709, 1801, 1901
Offset: 1

Views

Author

Michel Lagneau, May 23 2016

Keywords

Comments

Or numbers n such that A048050(n) = A007954(n).
Most of the terms are primes which have at least one 0 among their digits (A056709). The composite numbers of the sequence are 98, 329, 3383, 4343, 5561, 6623, 12773, 17267, 21479, 57721, 129383, 136259, 142943, 172793, 246959, 256631, 292571,...

Examples

			sigma(98) - 98 - 1 = 171 - 98 - 1 = 72 and 8*9 = 72 so 98 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 3000 do:
      q:=convert(n,base,10):n0:=nops(q):
      pr:=product('q[i]', 'i'=1..n0):p:=sigma(n)-n-1:
       if p=pr
        then
        printf(`%d, `,n):
        else
       fi:
    od:
  • Mathematica
    Do[If[DivisorSigma[1, n]-n-1==Apply[Times, IntegerDigits[n]], Print[n]], {n, 2000}]
    Select[Range[2,2000],Total[Most[Rest[Divisors[#]]]]==Times@@ IntegerDigits[ #]&] (* Harvey P. Dale, Jul 20 2019 *)

A069694 Triangular numbers with internal digits 2.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 120, 325, 528, 820, 1225
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {2}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

A069696 Triangular numbers with internal digits 4.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 741, 946, 6441, 544446
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Extensions

Extended by Robert G. Wilson v, Apr 07 2002

A069697 Triangular numbers with internal digits 5.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 153, 253, 351, 2556, 6555
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {5}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]
    Select[Accumulate[Range[0,300]],IntegerLength[#]<3||Union[Most[Rest[IntegerDigits[#]]]]=={5}&] (* Harvey P. Dale, Aug 13 2025 *)

Extensions

Extended by Robert G. Wilson v, Apr 07 2002

A069698 Triangular numbers with internal digits 6.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 465, 561, 666, 861, 46665, 5666661
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {6}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

Extensions

Extended by Robert G. Wilson v, Apr 07 2002
Corrected by Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 25 2004

A069699 Triangular numbers with internal digits 7.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 171, 276, 378, 1770, 2775, 5778, 8778
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {6}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

Extensions

Corrected by Sascha Kurz, Jan 02 2003

A177998 The n-digit prime with the largest number of zero decimal digits, the largest of these if there are more than one. Zero if no such prime exists.

Original entry on oeis.org

0, 0, 907, 9007, 90007, 900007, 8000009, 40000003, 700000001, 9000000001, 40000000003, 700000000009, 8000000000009, 70000000000009, 940000000000007, 9000000000000007, 70000000000000003, 200000000000000003
Offset: 1

Views

Author

Lekraj Beedassy, May 17 2010

Keywords

Comments

The largest number of zero digits in the n-digit prime is n-2, because leading zeros are ignored and the last digit is >0 for primes.

Examples

			3-digit primes with one zero are 101, 103, 107,.., 907. The largest of these is 907, which defines a(3).
		

Crossrefs

Previous Showing 11-20 of 20 results.