A277485
E.g.f.: -exp(2*x)*LambertW(-x).
Original entry on oeis.org
0, 1, 6, 33, 216, 1865, 21228, 303765, 5222864, 104540337, 2383558740, 60933722069, 1725392415288, 53590463856345, 1811281159509500, 66172416761172885, 2598298697830360992, 109116931783034360801, 4880122696811960470692, 231565260558289051906965
Offset: 0
-
CoefficientList[Series[-Exp[2*x]*LambertW[-x], {x, 0, 20}], x]*Range[0, 20]!
Table[Sum[Binomial[n, m]*Sum[Binomial[m, k]*k^(k-1), {k, 1, m}], {m, 1, n}], {n, 0, 20}]
-
x='x+O('x^50); concat([0], Vec(serlaplace(- exp(2*x)*lambertw(-x) ))) \\ G. C. Greubel, Nov 08 2017
A350454
Number T(n,k) of endofunctions on [n] with exactly k fixed points, none of which are isolated; triangle T(n,k), n >= 0, 0 <= k <= n/2, read by rows.
Original entry on oeis.org
1, 0, 1, 2, 8, 9, 81, 76, 12, 1024, 875, 180, 15625, 12606, 2910, 120, 279936, 217217, 53550, 3780, 5764801, 4348856, 1118936, 102480, 1680, 134217728, 99111735, 26280072, 2817360, 90720, 3486784401, 2532027610, 686569050, 81864720, 3729600, 30240
Offset: 0
Triangle T(n,k) begins:
1;
0;
1, 2;
8, 9;
81, 76, 12;
1024, 875, 180;
15625, 12606, 2910, 120;
279936, 217217, 53550, 3780;
5764801, 4348856, 1118936, 102480, 1680;
134217728, 99111735, 26280072, 2817360, 90720;
3486784401, 2532027610, 686569050, 81864720, 3729600, 30240;
...
-
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
t:= proc(n) option remember; n^(n-1) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
binomial(n-1, i-1)*(c(i)+`if`(i=1, 0, x*t(i))), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
egf := k-> exp(LambertW(-x))*(-x-LambertW(-x))^k/((1+LambertW(-x))*k!):
A350454 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A350454(n, k), k=0..n/2)), n=0..9); # Mélika Tebni, Nov 22 2022
-
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
t[n_] := t[n] = n^(n - 1);
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*
Binomial[n - 1, i - 1]*(c[i] + If[i == 1, 0, x*t[i]]), {i, 1, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)
A362856
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (-k)^(n-j) * j^j * binomial(n,j).
Original entry on oeis.org
1, 1, 1, 1, 0, 4, 1, -1, 3, 27, 1, -2, 4, 17, 256, 1, -3, 7, 7, 169, 3125, 1, -4, 12, -9, 120, 2079, 46656, 1, -5, 19, -37, 121, 1373, 31261, 823543, 1, -6, 28, -83, 208, 797, 21028, 554483, 16777216, 1, -7, 39, -153, 441, 21, 14517, 373931, 11336753, 387420489
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, ...
4, 3, 4, 7, 12, 19, ...
27, 17, 7, -9, -37, -83, ...
256, 169, 120, 121, 208, 441, ...
3125, 2079, 1373, 797, 21, -1525, ...
-
T(n, k) = sum(j=0, n, (-k)^(n-j)*j^j*binomial(n,j));
A362337
a(n) = n! * Sum_{k=0..floor(n/2)} (-k)^k / (k! * (n-2*k)!).
Original entry on oeis.org
1, 1, -1, -5, 37, 221, -2549, -21041, 342665, 3604537, -75816809, -970017949, 25012223149, 377031935125, -11513789879773, -199833956857289, 7052339905578001, 138505710577529969, -5546345926322582225, -121599560980889072693, 5447342134797972438581
Offset: 0
A362338
a(n) = n! * Sum_{k=0..floor(n/3)} (-k)^k / (k! * (n-3*k)!).
Original entry on oeis.org
1, 1, 1, -5, -23, -59, 1321, 9871, 39985, -1512503, -16027919, -89148509, 4751428441, 65256458125, 461686022617, -31737431328329, -535583971806239, -4599769739165039, 387180506424212065, 7750866424109754187, 78298694889496869961, -7798395141074580424619
Offset: 0
A362339
a(n) = n! * Sum_{k=0..floor(n/4)} (-k)^k / (k! * (n-4*k)!).
Original entry on oeis.org
1, 1, 1, 1, -23, -119, -359, -839, 78961, 722737, 3623761, 13297681, -2115602279, -27917827079, -195909017303, -980236890359, 219254440161121, 3780662914771681, 34105981790126881, 216149350680413857, -62275804867272039479, -1325952502191492278039
Offset: 0
A362340
a(n) = n! * Sum_{k=0..floor(n/2)} (-k/2)^k / (k! * (n-2*k)!).
Original entry on oeis.org
1, 1, 0, -2, 7, 51, -239, -2435, 16353, 209377, -1826099, -28232379, 303020125, 5494172893, -70032035163, -1457369472299, 21512472563281, 505400696581905, -8478758871011807, -221971772323923263, 4171251104170567101, 120416449897739144941
Offset: 0
A362341
a(n) = n! * Sum_{k=0..floor(n/3)} (-k/6)^k / (k! * (n-3*k)!).
Original entry on oeis.org
1, 1, 1, 0, -3, -9, 21, 246, 1065, -4283, -67319, -397484, 2315941, 45914155, 343743037, -2623221054, -62980998639, -571382718039, 5391435590545, 152175023203432, 1622112809355661, -18232162910685569, -591788241447761819, -7247966654986009490
Offset: 0
A362342
a(n) = n! * Sum_{k=0..floor(n/4)} (-k/24)^k / (k! * (n-4*k)!).
Original entry on oeis.org
1, 1, 1, 1, 0, -4, -14, -34, 71, 1135, 6091, 22771, -87119, -1847559, -13769755, -70046339, 390688481, 10473961121, 100030347361, 643972996705, -4717305354419, -153449916040259, -1787926183752939, -13926752488607419, 126329848106764765
Offset: 0
A065980
Inverse binomial transform of [1^1,2^2,3^3,...], shifted right by one index.
Original entry on oeis.org
1, 3, 20, 186, 2248, 33340, 585744, 11891236, 273854368, 7053523236, 200894140120, 6268924259884, 212691682554960, 7795165961244532, 306908654169113416, 12918649608270463740, 578931362074039774144
Offset: 1
Robert A. Stump (bee_ess107(AT)yahoo.com), Dec 09 2001
-
CoefficientList[Series[-E^(-x)*LambertW[-x]/(1+LambertW[-x])^3/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 17 2014 *)
-
a(n)=if(n<1,0,(n-1)!*polcoeff(exp(-x+O(x^n))*sum(k=0,n-1,(k+1)^(k+1)*x^k/k!),n-1))
Comments