cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 50 results.

A347142 Sum of 4th powers of divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 17, 1, 17, 1, 17, 1, 98, 1, 17, 82, 17, 1, 98, 1, 273, 82, 17, 1, 354, 1, 17, 82, 273, 1, 723, 1, 273, 82, 17, 626, 354, 1, 17, 82, 898, 1, 1394, 1, 273, 707, 17, 1, 1650, 1, 642, 82, 273, 1, 1394, 626, 2674, 82, 17, 1, 2275, 1, 17, 2483, 273, 626
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # < Sqrt[n] &], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[k^4 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A347142(n) = { my(s=0); fordiv(n,d,if((d^2)>=n,return(s)); s += (d^4)); }; \\ Antti Karttunen, Aug 19 2021

Formula

G.f.: Sum_{k>=1} k^4 * x^(k*(k + 1)) / (1 - x^k).

A348954 a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(n/d) * d.

Original entry on oeis.org

0, 1, -1, 1, -1, -1, -1, 3, -1, -1, -1, 6, -1, -1, -4, 3, -1, 2, -1, -1, -4, -1, -1, 10, -1, -1, -4, -1, -1, 7, -1, 7, -4, -1, -6, 2, -1, -1, -4, 12, -1, -4, -1, -1, -9, -1, -1, 16, -1, 4, -4, -1, -1, -4, -6, 14, -4, -1, -1, 13, -1, -1, -11, 7, -6, -4, -1, -1, -4, 11, -1, 8, -1, -1, -9, -1, -8, -4, -1, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(n/#) # &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348954(n) = sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k * x^(k*(k + 1)) / (1 + x^k).

A033832 Sum of odd divisors of n < sqrt(n) = sum of even divisors of n < sqrt(n).

Original entry on oeis.org

1, 40, 100, 208, 928, 1044, 3904, 10692, 17444, 29524, 36652, 45980, 87604, 91044, 136808, 158652, 161564, 171028, 187068, 218652, 230044, 260608, 287868, 406812, 438124, 450492, 583110, 665684, 719550, 731850, 736648, 865444, 1045504
Offset: 1

Views

Author

Keywords

Comments

All terms except first one appear to be even. - Michel Marcus, Jul 15 2013

Crossrefs

Programs

  • Mathematica
    aQ[n_] := DivisorSum[n, # * (-1)^# &, # < Sqrt[n] & ] == 0; Select[Range[10^4], aQ] (* Amiram Eldar, Sep 23 2019 *)
  • PARI
    isok(n) = {so = 0; se = 0; fordiv (n, d, if (d < sqrt(n), if (d % 2, so += d, se += d))); return (so == se);} \\ Michel Marcus, Jul 14 2013

Extensions

Prepended a(1)=1, Michel Marcus, Jul 15 2013

A102883 Terms which share a divisor greater than 1 with the value formed by adding them to the sum of their divisors less than or equal to their square roots.

Original entry on oeis.org

6, 12, 18, 24, 28, 36, 40, 42, 45, 48, 50, 54, 56, 60, 66, 70, 72, 75, 78, 80, 90, 96, 98, 100, 102, 110, 112, 114, 117, 120, 126, 130, 132, 135, 138, 144, 150, 154, 156, 160, 162, 165, 170, 174, 176, 180, 186, 190, 192, 196, 198, 200, 204, 208, 210, 216, 220
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jan 15 2005

Keywords

Comments

At first glance it appears that all multiples of 6 are included in this sequence, but a number of them are excluded (such as 5*6 and 14*6.) See A102884 for a list of multiples of 6 not included in this sequence.

Examples

			a(3) = 18 because the divisors of 18 less than or equal to its square root are 1, 2 and 3. 18+1+2+3 = 24 and GCD(18,24) = 6 which is greater than 1. 18 is the third term which satisfies this requirement.
		

Crossrefs

Programs

  • Maple
    compute := proc (n) local m, a; m := n; for a to n^.5 do if `mod`(n,a) = 0 then m := m+a end if end do; m end proc L:=[];for i from 1 to 2500 do; if i>0 then; x:=compute(i); if gcd(x,i) > 1 then L:=[op(L),i]; fi; fi; od;L;
  • Mathematica
    aQ[n_] := GCD[n, DivisorSum[n, # &, # < Sqrt[n] &]] > 1; Select[Range[220], aQ] (* Amiram Eldar, Aug 28 2019 *)

A088345 n is divisible by the sum of all divisors of n which are less than the square root of n (values of n where 1 is the only divisor less than sqrt(n) are excluded as trivial cases.).

Original entry on oeis.org

6, 12, 18, 28, 45, 48, 56, 72, 80, 96, 117, 196, 396, 475, 496, 702, 704, 775, 992, 1100, 1326, 1568, 1792, 2009, 2150, 2622, 2952, 3042, 3321, 3672, 4140, 5328, 5852, 6750, 6860, 7154, 7605, 7680, 8128, 9102, 10575, 11008, 12126, 12168, 12384, 12810
Offset: 1

Views

Author

Chuck Seggelin, Nov 07 2003

Keywords

Comments

If values of n where only the divisor 1 is < sqrt(n) were not excluded, then this sequence would include the primes and the squares of primes.

Examples

			a(4)=28 because sqrt(28)=5.291502622 and the divisors of 28 which are less than 5.291502622 are 1, 2 and 4. These divisors sum to 7 which divides 28.
		

Crossrefs

Cf. A070039.

Programs

  • Maple
    j := {}; for i to 1000 do; d := divisors(i) minus {i}; if d<>{1} then v := 0; s := evalf(sqrt(i)); for f in d do; if f1 then if i mod v = 0 then print(i,v,i/v); j := j union {i} fi; fi; fi; od; j;
  • Mathematica
    ds[n_] := DivisorSum[n, # &, # < Sqrt[n] &]; aQ[n_] := (d = ds[n]) > 1 && Divisible[n, d]; Select[Range[12810], aQ] (* Amiram Eldar, Aug 28 2019 *)

A176314 Sum of remainders of mod(n, k), for 1 <= k <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 3, 0, 2, 2, 1, 1, 4, 2, 5, 2, 2, 3, 6, 0, 3, 5, 6, 4, 8, 2, 6, 4, 5, 7, 6, 1, 6, 9, 11, 5, 10, 4, 9, 8, 5, 8, 13, 3, 8, 7, 10, 10, 16, 11, 12, 5, 8, 12, 18, 4, 10, 14, 10, 10, 12, 8, 15, 16, 20, 13, 20, 4, 11, 16, 15, 16, 16, 12, 19, 7, 11, 17, 25, 11, 14, 20, 25
Offset: 1

Author

Keywords

Comments

It appears, as one would expect, that a(n) is asymptotically 1/4 n.
24 is the last n for which a(n) = 0.

Crossrefs

Programs

  • Mathematica
    Total/@Table[Mod[n,k],{n,90},{k,Sqrt[n]}] (* Harvey P. Dale, Nov 20 2013 *)
  • PARI
    a(n) = sum(k=2,sqrtint(n),n%k)

Formula

a(n+1) = a(n) + floor(sqrt(n)) - A070039(n+1).

A363520 Product of the divisors of n that are < sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 8, 3, 2, 1, 24, 1, 2, 3, 8, 1, 30, 1, 8, 3, 2, 5, 24, 1, 2, 3, 40, 1, 36, 1, 8, 15, 2, 1, 144, 1, 10, 3, 8, 1, 36, 5, 56, 3, 2, 1, 720, 1, 2, 21, 8, 5, 36, 1, 8, 3, 70, 1, 1152, 1, 2, 15, 8, 7, 36, 1, 320, 3, 2, 1
Offset: 1

Author

Wesley Ivan Hurt, Jun 07 2023

Keywords

Examples

			The product of divisors of 16 that are < sqrt(16) = 4 is 1*2 = 2, so a(16) = 2.
		

Crossrefs

Cf. A070039 (sum of those divisors).

Programs

  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], #^2 < n &]; Array[a, 100]
  • PARI
    a(n) = vecprod(select(x->(x^2Michel Marcus, Jun 08 2023

Formula

a(n) = Product_{d|n, d
a(n) = Product_{k=1..floor(sqrt(n-1))} k^c(n/k), where c(m) = 1-ceiling(m)+floor(m).
a(n) = A072499(n)/A000196(n)^A010052(n) for n>=1.

A372834 a(n) is the numerator of Sum_{d|n, d < sqrt(n)} 1/d.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 11, 1, 3, 4, 3, 1, 11, 1, 7, 4, 3, 1, 25, 1, 3, 4, 7, 1, 61, 1, 7, 4, 3, 6, 25, 1, 3, 4, 39, 1, 2, 1, 7, 23, 3, 1, 9, 1, 17, 4, 7, 1, 2, 6, 53, 4, 3, 1, 49, 1, 3, 31, 7, 6, 2, 1, 7, 4, 129, 1, 19, 1, 3, 23, 7, 8, 2, 1, 83
Offset: 1

Author

Ilya Gutkovskiy, May 14 2024

Keywords

Examples

			0, 1, 1, 1, 1, 3/2, 1, 3/2, 1, 3/2, 1, 11/6, 1, 3/2, 4/3, 3/2, 1, 11/6, ...
		

Crossrefs

Cf. A017665, A070039, A372835 (denominators).

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[x^(k (k + 1))/(k (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
  • PARI
    a(n) = numerator(sumdiv(n, d, if (d^2 < n, 1/d))); \\ Michel Marcus, May 14 2024

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^(k*(k+1)) / (k * (1 - x^k)).

A372835 a(n) is the denominator of Sum_{d|n, d < sqrt(n)} 1/d.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4, 1, 30, 1, 4, 3, 2, 5, 12, 1, 2, 3, 20, 1, 1, 1, 4, 15, 2, 1, 4, 1, 10, 3, 4, 1, 1, 5, 28, 3, 2, 1, 20, 1, 2, 21, 4, 5, 1, 1, 4, 3, 70, 1, 8, 1, 2, 15, 4, 7, 1, 1, 40
Offset: 1

Author

Ilya Gutkovskiy, May 14 2024

Keywords

Examples

			0, 1, 1, 1, 1, 3/2, 1, 3/2, 1, 3/2, 1, 11/6, 1, 3/2, 4/3, 3/2, 1, 11/6, ...
		

Crossrefs

Cf. A017666, A070039, A372834 (numerators).

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[x^(k (k + 1))/(k (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
  • PARI
    a(n) = denominator(sumdiv(n, d, if (d^2 < n, 1/d))); \\ Michel Marcus, May 14 2024

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^(k*(k+1)) / (k * (1 - x^k)).

A373032 Expansion of Sum_{k>=1} (-1)^(k+1) * k^2 * x^(k*(k+1)) / (1 - x^k).

Original entry on oeis.org

0, 1, 1, 1, 1, -3, 1, -3, 1, -3, 1, 6, 1, -3, 10, -3, 1, 6, 1, -19, 10, -3, 1, -10, 1, -3, 10, -19, 1, 31, 1, -19, 10, -3, 26, -10, 1, -3, 10, 6, 1, -30, 1, -19, 35, -3, 1, -46, 1, 22, 10, -19, 1, -30, 26, 30, 10, -3, 1, -21, 1, -3, 59, -19, 26, -30, 1, -19, 10, 71
Offset: 1

Author

Ilya Gutkovskiy, May 20 2024

Keywords

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[(-1)^(k + 1) k^2 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(d+1) * d^2.
Previous Showing 41-50 of 50 results.