cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A036441 a(n+1) = next number having largest prime dividing a(n) as a factor, with a(1) = 2.

Original entry on oeis.org

2, 4, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 70, 77, 88, 99, 110, 121, 132, 143, 156, 169, 182, 195, 208, 221, 238, 255, 272, 289, 306, 323, 342, 361, 380, 399, 418, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 696, 725, 754, 783, 812, 841, 870
Offset: 1

Views

Author

Frederick Magata (frederick.magata(AT)uni-muenster.de)

Keywords

Comments

a(n) satisfies the following inequality: (1/4)*(n^2 + 3*n + 1) <= a(n) <= (1/4)*(n+2)^2. [Corrected by M. F. Hasler, Apr 08 2015]
The present sequence is the special case a(n) = a(2,n) with a more general a(m, n) := a(m, n-1) + gpf(a(m, n-1)), a(m, 1) := m, where gpf(x) := "greatest prime factor of x" = A006530(x). Also a(a(r,k), n) = a(r,n+k-1), for all n,k in N\{0} and all r in N\{0,1}; a(prime(k), n) = a(prime(i), n + prime(k) - prime(i)), for all k,i,n in N\{0}, with k >= i, n >= prime(k-1) and with prime(x) := x-th prime.
Essentially the same as A076271 and A180107, cf. formula.

Examples

			a(2,2) = 4 because 2 + gpf(2) = 2 + 2 = 4;
a(2,3) = 6 because 4 + gpf(4) = 4 + 2 = 6.
		

Crossrefs

Cf. A006530. See A076271 and A180107 for other versions.
Cf. A123581.
Partial sums of A076973.

Programs

  • Haskell
    a036441 n = a036441_list !! (n-1)
    a036441_list = tail a076271_list
    -- Reinhard Zumkeller, Nov 08 2015, Nov 14 2011
    
  • Mathematica
    f[n_]:=Last[First/@FactorInteger[n]];Join[{a=2},Table[a+=f[a],{n,2,100}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
    NestList[#+FactorInteger[#][[-1,1]]&,2,60] (* Harvey P. Dale, Dec 02 2012 *)
  • PARI
    a(n)=(n+2-if(n\2+1<(p=nextprime(n\2+1))&&n+1M. F. Hasler, Apr 08 2015

Formula

a(n) = p(m)*(n+2-p(m)), where p(k) is the k-th prime and m is the smallest index such that n+2 <= p(m) + p(m+1). - Max Alekseyev, Oct 21 2008
a(n) = A076271(n+1) = A180107(n+2). - M. F. Hasler, Apr 08 2015
a(n+1) = A070229(a(n)). - Reinhard Zumkeller, Nov 07 2015

Extensions

Better description from Reinhard Zumkeller, Feb 04 2002
Edited by M. F. Hasler, Apr 08 2015

A123581 a(1) = 3, a(n) = a(n-1) + greatest prime factor of a(n-1).

Original entry on oeis.org

3, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 70, 77, 88, 99, 110, 121, 132, 143, 156, 169, 182, 195, 208, 221, 238, 255, 272, 289, 306, 323, 342, 361, 380, 399, 418, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 696, 725, 754, 783, 812, 841, 870
Offset: 1

Views

Author

Ben Paul Thurston, Nov 12 2006

Keywords

Examples

			a(16) = 88 because a(15) is 77 whose largest prime factor is 11 so 77 + 11 = 88.
		

Crossrefs

Essentially the same as A036441 and A076271.
Cf. A070229.

Programs

  • Haskell
    a123581 n = a123581_list !! (n-1)
    a123581_list = iterate a070229 3  -- Reinhard Zumkeller, Nov 07 2015
  • Maple
    A123581:= proc(n) option remember;
    local t;
    t:= procname(n-1);
    t + max(numtheory[factorset](t));
    end proc;
    A123581(1):= 3;
    seq(A123581(n),n=1..100); # Robert Israel, May 18 2014
  • Mathematica
    a[1] = 3; a[n_] := a[n] = a[n - 1] + FactorInteger[a[n - 1]][[ -1, 1]]; Array[a, 56] (* Robert G. Wilson v *)
  • PARI
    {print1(a=3,",");for(n=2,57,print1(a=a+vecmax(factor(a)[,1]),","))} \\ Klaus Brockhaus, Nov 19 2006
    

Formula

a(n+1) = A070229(a(n)). - Reinhard Zumkeller, Nov 07 2015

Extensions

More terms from Robert G. Wilson v and Klaus Brockhaus, Nov 18 2006

A260648 Number of distinct prime divisors p of the n-th composite number c such that gpf(c - p) = p, where gpf = greatest prime factor (A006530).

Original entry on oeis.org

1, 2, 0, 1, 2, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 2, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 0, 0, 1, 3
Offset: 1

Views

Author

Gionata Neri, Nov 12 2015

Keywords

Comments

a(n) gives the number of times that the n-th composite number occurs in A070229.

Examples

			a(8) = 2 since the distinct prime divisors of A002808(8) = 15 are 3 and 5, A006530(15 - 3) = 3 and A006530(15 - 5) = 5, so all prime 3 and 5 are to be considered.
		

Crossrefs

Cf. A002808 (composite), A006530 (gpf).

Programs

  • Maple
    N:= 1000: # to consider composites <= N
    f:= proc(c) local p, t;
       if isprime(c) then return NULL fi;
       nops(select(p -> max(numtheory:-factorset(c/p-1))<=p, numtheory:-factorset(c)))
    end proc:
    map(f, [$4..N]); # Robert Israel, May 02 2017

Extensions

a(87) corrected by Robert Israel, May 02 2017
Previous Showing 11-13 of 13 results.