cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 102 results. Next

A269345 Smaller of two consecutive odd numbers that are composites.

Original entry on oeis.org

25, 33, 49, 55, 63, 75, 85, 91, 93, 115, 117, 119, 121, 123, 133, 141, 143, 145, 153, 159, 169, 175, 183, 185, 187, 201, 203, 205, 207, 213, 215, 217, 219, 235, 243, 245, 247, 253, 259, 265, 273, 285, 287, 289, 295, 297, 299, 301, 303, 319, 321, 323, 325, 327, 333
Offset: 1

Views

Author

Waldemar Puszkarz, Feb 24 2016

Keywords

Comments

Analogous to A001359 for odd composite numbers (A071904).
Consists of numbers that cannot be the difference of two primes: an odd number m can be the difference of two primes only if m+2 is prime, which cannot be the case for any a(n) as a(n)+2 is composite.
Some terms form subsequences of perfect powers, e.g., A106564 (for squares) and A269346 (for cubes).
Any composite of the form 6k+1 (A016921) is a term: (6k+1)+2 = 3(2k+1) is both odd and composite as a product of two odd numbers, thus 6k+1, being odd, is a term if it is composite.

Examples

			25 belongs to this sequence because 27=25+2 is the next odd composite.
		

Crossrefs

Cf. A071904 (odd composites), A001359 (similar sequence for primes).
Cf. A061673.

Programs

  • Magma
    [n: n in [1..350]| not IsPrime(n) and not IsPrime(n+2) and n mod 2 eq 1]; // Vincenzo Librandi, Feb 28 2016
  • Mathematica
    Select[Range[450], OddQ[#]&& !PrimeQ[#]&&!PrimeQ[#+2]&]
  • PARI
    for(n=1, 450, n%2==1&&!isprime(n)&&!isprime(n+2)&&print1(n, ", "))
    

Formula

a(n) = A061673(n) - 1. - M. F. Hasler, Nov 18 2018

Extensions

Name edited by Michel Marcus, Jul 27 2023

A339517 Odd composite integers m such that A000032(2*m-J(m,5)) == J(m,5) (mod m), where J(m,5) is the Jacobi symbol.

Original entry on oeis.org

323, 377, 1001, 1183, 1729, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 8841, 10877, 11663, 13201, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 26011, 27323, 30889, 34561, 34943, 35207, 39203, 40501, 41041
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=1, D=5 and k=2, while V(m) recovers A000032(m) (Lucas numbers).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A000032, A071904, A339125 (a=1, b=-1, k=1).
Cf. A339518 (a=3, b=-1), A339519 (a=5, b=-1), A339520 (a=7, b=-1).

Programs

  • Mathematica
    Select[Range[3, 45000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 5]] - JacobiSymbol[#, 5], #] &]

A339518 Odd composite integers m such that A006497(2*m-J(m,13)) == 3*J(m,13) (mod m), where J(m,13) is the Jacobi symbol.

Original entry on oeis.org

15, 75, 105, 119, 165, 255, 375, 649, 1189, 1635, 1763, 1785, 1875, 2233, 2625, 3599, 3815, 4125, 4187, 5475, 5559, 5887, 6375, 6601, 6681, 7905, 8175, 9265, 9375, 9471, 11175, 11767, 11977, 12095, 12403, 12685, 12871, 13601, 14041, 14279, 15051, 16109, 16359
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=3, D=13 and k=2, while V(m) recovers A006497(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A006497, A071904, A339126 (a=3, b=-1, k=1).
Cf. A339517 (a=1, b=-1), A339519 (a=5, b=-1), A339520 (a=7, b=-1).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 13], 3] - 3*JacobiSymbol[#, 13], #] &]

A339520 Odd composite integers m such that A086902(2*m-J(m,53)) == 7*J(m,53) (mod m), where J(m,53) is the Jacobi symbol.

Original entry on oeis.org

25, 35, 51, 65, 75, 91, 105, 175, 203, 325, 391, 455, 575, 645, 861, 1247, 1275, 1295, 1633, 1763, 1775, 1785, 1875, 1921, 2275, 2407, 2415, 2599, 2625, 2651, 3045, 3367, 4199, 4579, 4623, 5629, 5835, 5887, 6441, 6699, 9959, 10465, 10815, 10825, 10877, 11865, 12025
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=7, D=53 and k=2, while V(m) recovers A086902(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A086902, A071904, A339128 (a=7, b=-1, k=1).
Cf. A339517 (a=1, b=-1), A339518 (a=3, b=-1), A339529 (a=5, b=-1).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 53], 7] - 7*JacobiSymbol[#, 53], #] &]

A339522 Odd composite integers m such that A003501(2*m-J(m,21)) == 5 (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.

Original entry on oeis.org

95, 115, 145, 253, 391, 527, 551, 713, 715, 779, 935, 1045, 1615, 1705, 1805, 1807, 1919, 2185, 2627, 2755, 2893, 2929, 2945, 3281, 4033, 4141, 4205, 5191, 5671, 5777, 5983, 6049, 6479, 7645, 7739, 8441, 8555, 8695, 9361, 11663, 11815, 12121, 12209, 12265, 14491
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1) (mod m) are called generalized Pell-Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=5, D=21 and k=2, while V(m) recovers A003501(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A003501, A071904, A339130 (a=5, b=1, k=1).
Cf. A339521 (a=3, b=1), A339523 (a=7, b=1).

Programs

  • Maple
    filter:= proc(m)
    uses LinearAlgebra:-Modular;
    local p,M;
      if igcd(m,21) <> 1 then return false fi;
      if isprime(m) then return false fi;
      p:= 2*m - numtheory:-jacobi(m,21);
      M:= Mod(m,[[0,1],[-1,5]],integer[8]);
      (MatrixPower(m,M,p) . <2,5>)[1] - 5 mod m = 0
    end proc:
    select(filter, [seq(i,i=9..20000,2)]); # Robert Israel, Dec 15 2020
  • Mathematica
    Select[Range[3, 20000, 2], CoprimeQ[#, 21] && CompositeQ[#] && Divisible[2*ChebyshevT[2*# - JacobiSymbol[#, 21], 5/2] - 5, #] &]

A339523 Odd composite integers m such that A056854(2*m-J(m,45)) == 7 (mod m) and gcd(m,45)=1, where J(m,45) is the Jacobi symbol.

Original entry on oeis.org

91, 203, 323, 329, 377, 451, 1001, 1081, 1183, 1547, 1729, 1771, 1819, 1891, 1967, 2033, 2093, 2639, 2821, 3197, 3311, 3653, 3731, 3827, 4181, 4669, 5551, 5671, 5777, 5887, 6601, 6721, 7471, 7931, 7973, 8149, 8557, 9541, 9737, 10877, 11309, 11663, 11977, 13201
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1) (mod m) are called generalized Pell-Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=7, D=45 and k=2, while V(m) recovers A056854(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A056854, A071904, A339131 (a=7, b=1, k=1).
Cf. A339521 (a=3, b=1), A339522 (a=5, b=1).

Programs

  • Maple
    filter:= proc(m)
    uses LinearAlgebra:-Modular;
    local p,M;
      if igcd(m,45) <> 1 then return false fi;
      if isprime(m) then return false fi;
      p:= 2*m - numtheory:-jacobi(m,45);
      M:= Mod(m,[[0,1],[-1,7]],integer[8]);
      (MatrixPower(m,M,p) . <2,7>)[1] - 7 mod m = 0
    end proc:
    select(filter, [seq(i,i=9..10000,2)]); # Robert Israel, Dec 15 2020
  • Mathematica
    Select[Range[3, 15000, 2], CoprimeQ[#, 45] && CompositeQ[#] && Divisible[LucasL[4*(2*# - JacobiSymbol[#, 45])] - 7, #] &]

A340118 Odd composite integers m such that A000045(2*m-J(m,5)) == 1 (mod m), where J(m,5) is the Jacobi symbol.

Original entry on oeis.org

323, 377, 609, 1891, 3081, 3827, 4181, 5777, 5887, 6601, 6721, 8149, 10877, 11663, 13201, 13601, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 28441, 28623, 30889, 32509, 34561, 34943, 35207, 39203, 40501
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=1, D=5 and k=2, while U(m) is A000045(m) (Fibonacci sequence).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A000045, A071904, A081264 (a=1, b=-1, k=1), A327653 (a=3, b=-1, k=1).
Cf. A340119 (a=3, b=-1, k=2), A340120 (a=5, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 50000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 5], 1] - 1, #] &]

A340119 Odd composite integers m such that A006190(2*m-J(m,13)) == 1 (mod m), where J(m,13) is the Jacobi symbol.

Original entry on oeis.org

9, 27, 63, 81, 99, 119, 153, 243, 567, 649, 729, 759, 891, 903, 1071, 1189, 1377, 1431, 1539, 1763, 1881, 1953, 2133, 2187, 3599, 3897, 4187, 4585, 5103, 5313, 5559, 5589, 5819, 6561, 6681, 6831, 6993, 8019, 8127, 8829, 8855, 9639, 9999, 10611, 11135, 11691, 11961
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4. The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=3, D=13 and k=2, while U(m) is A006190(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A006190, A071904, A081264 (a=1, b=-1, k=1), A327653 (a=3, b=-1, k=1).
Cf. A340118 (a=1, b=-1, k=2), A340120 (a=5, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 12000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 13], 3] - 1, #] &]

A340120 Odd composite integers m such that A052918(2*m-J(m,29)) == 1 (mod m), where J(m,29) is the Jacobi symbol.

Original entry on oeis.org

9, 15, 25, 27, 45, 75, 91, 121, 125, 135, 143, 147, 175, 225, 275, 325, 375, 441, 483, 625, 675, 735, 755, 1125, 1323, 1547, 1573, 1875, 1935, 2015, 2205, 2275, 2485, 2943, 3025, 3125, 3375, 3575, 3675, 3775, 3843, 4375, 5525, 5625, 5819, 6543, 6615, 6721
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=5, D=29 and k=2, while U(m) is A052918(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A052918, A071904, A340095 (a=5, b=-1, k=1).
Cf. A340118 (a=1, b=-1, k=2), A340119 (a=3, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 29], 5] - 1, #] &]

A340121 Odd composite integers m such that A054413(2*m-J(m,53)) == 1 (mod m), where J(m,53) is the Jacobi symbol.

Original entry on oeis.org

25, 35, 39, 49, 51, 65, 91, 147, 175, 245, 301, 325, 343, 391, 455, 507, 575, 605, 637, 663, 741, 833, 897, 903, 935, 1127, 1205, 1225, 1247, 1295, 1505, 1595, 1633, 1715, 1763, 1775, 1911, 1921, 2107, 2275, 2401, 2407, 2499, 2599, 2651, 3025, 3143, 3185, 3311
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=7, D=53 and k=2, while U(m) is A054413(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A054413, A071904, A340096 (a=7, b=-1, k=1).
Cf. A340118 (a=1, b=-1, k=2), A340119 (a=3, b=-1, k=2), A340120 (a=5, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 53], 7] - 1, #] &]
Previous Showing 41-50 of 102 results. Next