cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A080541 In binary representation: keep the first digit and left-rotate the others.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Permutation of natural numbers: let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080542(n).
Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015

Examples

			a(20)=a('10100')='11000'=24; a(24)=a('11000')='10001'=17.
		

Crossrefs

Inverse: A080542.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.

Programs

  • Maple
    f:= proc(n) local d;
       d:= ilog2(n);
       if n >= 3/2*2^d then 2*n+1-2^(d+1) else 2*n - 2^d fi
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2015
  • Mathematica
    A080541[n_] := FromDigits[Join[{First[#]}, RotateLeft[Rest[#]]], 2] & [IntegerDigits[n, 2]];
    Array[A080541, 100] (* Paolo Xausa, May 13 2025 *)
  • Python
    def A080541(n): return ((n&(m:=1< 1 else n  # Chai Wah Wu, Jan 22 2023
  • R
    maxlevel <- 6 # by choice
    a <- 1:3
    for(m in 1:maxlevel) for(k in 0:(2^(m-1)-1)){
    a[2^(m+1)       + 2*k    ] = 2*a[2^m           + k]
    a[2^(m+1)       + 2*k + 1] = 2*a[2^m + 2^(m-1) + k]
    a[2^(m+1) + 2^m + 2*k    ] = 2*a[2^m           + k] + 1
    a[2^(m+1) + 2^m + 2*k + 1] = 2*a[2^m + 2^(m-1) + k] + 1
    }
    a
    # Yosu Yurramendi, Oct 12 2020
    
  • Scheme
    (define (A080541 n) (if (< n 2) n (A003986bi (A053644 n) (+ (* 2 (A053645 n)) (A079944off2 n))))) ;; A003986bi gives the bitwise OR of its two arguments. See A003986.
    ;; Where A079944off2 gives the second most significant bit of n. (Cf. A079944):
    (define (A079944off2 n) (A000035 (floor->exact (/ n (A072376 n)))))
    ;; Antti Karttunen, May 16 2015
    

Formula

From Antti Karttunen, May 16 2015: (Start)
a(1) = 1; for n > 1, a(n) = A053644(n) bitwise_OR (2*A053645(n) + second_most_significant_bit_of(n)). [Here bitwise_OR is a 2-argument function given by array A003986 and second_most_significant_bit_of gives the second most significant bit (0 or 1) of n larger than 1. See A079944.]
Other identities. For all n >= 1:
a(n) = A059893(A080542(A059893(n))).
a(n) = A054429(a(A054429(n))).
(End)
A080542(a(n)) = a(A080542(n)) = n. [A080542 is the inverse permutation.]
From Robert Israel, May 19 2015: (Start)
Let d = floor(log[2](n)). If n >= 3*2^(d-1) then a(n) = 2*n + 1 - 2^(d+1), otherwise a(n) = 2*n - 2^d.
G.f.: 2*x/(x-1)^2 + Sum_{n>=1} x^(2^n)+(2^n-1)*x^(3*2^(n-1)))/(x-1). (End)

A080542 In binary representation: keep the first digit and rotate right the others.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 12, 9, 13, 10, 14, 11, 15, 16, 24, 17, 25, 18, 26, 19, 27, 20, 28, 21, 29, 22, 30, 23, 31, 32, 48, 33, 49, 34, 50, 35, 51, 36, 52, 37, 53, 38, 54, 39, 55, 40, 56, 41, 57, 42, 58, 43, 59, 44, 60, 45, 61, 46, 62, 47, 63, 64, 96, 65, 97, 66, 98, 67, 99, 68
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Permutation of natural numbers with inverse = A080541: A080541(a(n)) = a(A080541(n)) = n;
let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080541(n).
Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015

Examples

			a(20) = a('10100') = '10010' = 18.
a(25) = a('11001') = '11100' = 28.
		

Crossrefs

Inverse: A080541.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.

Programs

  • Mathematica
    kfd[n_]:=Module[{a,b},{a,b}=TakeDrop[IntegerDigits[n,2],1];FromDigits[ Join[a,RotateRight[b]],2]]; Array[kfd,80] (* The program uses the TakeDrop function from Mathematica version 10 *) (* Harvey P. Dale, Feb 12 2016 *)
  • Python
    def A080542(n): return (1+(n&1))*(1<>1) if n > 1 else n # Chai Wah Wu, Jan 22 2023
  • R
    nmax <- 31 # by choice
    a <- 1:3
    for(n in 1:nmax) for(k in 0:3)
    a[4*n + k] = 2*a[2*n + (k == 1 | k == 3)] + (k == 2 | k == 3)
    a
    # Yosu Yurramendi, Sep 05 2020
    
  • Scheme
    (define (A080542 n) (if (< n 2) n (+ (A053644 n) (+ (* (A000035 n) (A072376 n)) (A004526 (A053645 n))))))  ;; Antti Karttunen, May 16 2015
    

Formula

a(n) = 2^log2(n) + floor((n-2^log2(n))/2) + (n mod 2)*2^(log2(n)-1), where log2(n) is the integer part of base-2 logarithm.
From Antti Karttunen, May 16 2015: (Start)
a(1) = 1; for n > 1, a(n) = A053644(n) + (A000035(n)*A072376(n)) + A004526(A053645(n)). [Essentially the same formula but represented with A-numbers.]
Other identities. For all n >= 1:
a(n) = A059893(A080541(A059893(n))).
a(n) = A054429(a(A054429(n))).
(End)

A073137 a(n) is the least number whose binary representation has the same number of 0's and 1's as n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 5, 7, 8, 9, 9, 11, 9, 11, 11, 15, 16, 17, 17, 19, 17, 19, 19, 23, 17, 19, 19, 23, 19, 23, 23, 31, 32, 33, 33, 35, 33, 35, 35, 39, 33, 35, 35, 39, 35, 39, 39, 47, 33, 35, 35, 39, 35, 39, 39, 47, 35, 39, 39, 47, 39, 47, 47, 63, 64, 65, 65, 67, 65, 67, 67, 71, 65
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 16 2002

Keywords

Comments

A023416(a(n)) = A023416(n), A000120(a(n)) = A000120(n).
Fixed points are { 0 } union { A099627 }. - Alois P. Heinz, Jan 30 2025

Examples

			a(20)=17, as 20='10100' and 17 is the smallest number having two 1's and three 0's: 17='10001', 18='10010', 20='10100' and 24='11000'.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> (2^nops(l)+2^add(i, i=l))/2-1)(Bits[Split](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 26 2021
  • Mathematica
    lnb[n_]:=Module[{sidn=Sort[IntegerDigits[n,2]]},FromDigits[Join[{1}, Most[ sidn]],2]]; Join[{0},Array[lnb,80]] (* Harvey P. Dale, Aug 04 2014 *)
  • PARI
    a(n) = if(n==0,0, 1<Kevin Ryde, Jun 26 2021
  • Python
    def a(n):
        b = bin(n)[2:]; z = b.count('0'); w = len(b) - z
        return int('1'*(w > 0) + '0'*z + '1'*(w-1), 2)
    print([a(n) for n in range(73)]) # Michael S. Branicky, Jun 26 2021
    
  • Python
    def a(n): b = bin(n)[2:]; return int(b[0] + "".join(sorted(b[1:])), 2)
    print([a(n) for n in range(73)]) # Michael S. Branicky, Jun 26 2021
    

Formula

a(0)=0, a(1)=1; for n > 1, let C = 2^(floor(log_2(n))-1) = A072376(n); then a(n) = a(n-C) + C if n < 3*C; otherwise a(n) = 2*a(n - 2*C) + 1. [corrected by Jon E. Schoenfield, Jun 27 2021]
For n > 0: a(n) = (2^(A000120(n) - 1)) * (2^A023416(n) + 1) - 1. - Corrected by Michel Marcus, Nov 15 2013

A154442 Permutation of nonnegative integers: the inverse of A154441.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 4, 5, 12, 13, 15, 14, 8, 9, 10, 11, 24, 25, 26, 27, 30, 31, 28, 29, 16, 17, 18, 19, 20, 21, 22, 23, 48, 49, 50, 51, 52, 53, 54, 55, 60, 61, 63, 62, 56, 57, 58, 59, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 96, 97, 98, 99, 100, 101, 102
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Crossrefs

Inverse: A154441. a(n) = A153141(A154444(n)) = A054429(A154446(A054429(n))). Cf. A072376, A153141-A153142, A154435-A154436, A154439-A154448. Corresponds to A154452 in the group of Catalan bijections.

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A154446 Permutation of nonnegative integers: The inverse of A154445.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 4, 5, 12, 13, 14, 15, 9, 8, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31, 18, 19, 16, 17, 20, 21, 22, 23, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 36, 37, 38, 39, 33, 32, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 96, 97, 98, 99, 100, 101, 102
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Crossrefs

Inverse: A154445. a(n) = A153142(A154440(n)) = A054429(A154442(A054429(n))). Cf. A072376, A153141-A153142, A154435-A154436, A154439-A154448. Corresponds to A154456 in the group of Catalan bijections.

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A154440 Permutation of nonnegative integers: the inverse of A154439.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 11, 14, 15, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 31, 30, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 56, 57, 58, 59, 62, 63, 60, 61, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Crossrefs

Inverse: A154439. a(n) = A153141(A154446(n)) = A054429(A154444(A054429(n))). Cf. A072376, A153141-A153142, A154435-A154436, A154442-A154448. Corresponds to A154450 in the group of Catalan bijections.

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A154441 Permutation of nonnegative integers induced by Basilica group generating wreath recursion: a = (1,b), b = s(1,a), starting from the active (swapping) state b.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 4, 5, 12, 13, 14, 15, 8, 9, 11, 10, 24, 25, 26, 27, 28, 29, 30, 31, 16, 17, 18, 19, 22, 23, 20, 21, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 40, 41, 43, 42, 96, 97, 98, 99, 100, 101, 102
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Comments

This permutation is induced by the Basilica group generating wreath recursion a = (1,b), b = s(1,a) (i.e. binary transducer, where s means that the bits at that state are toggled: 0 <-> 1) given on the page 40 of Bartholdi and Virag paper, starting from the active (switching) state b and rewriting bits from the second most significant bit to the least significant end.

Examples

			Starting from the second most significant bit, we continue complementing every second bit (in this case, starting from the second most significant bit), as long as the first zero is encountered, which is also complemented if its distance to the most significant bit is odd, after which the remaining bits are left intact. E.g. 121 = 1111001 in binary. Complementing its second and fourth most significant bits (positions 5 & 3) and stopping at the first zero-bit at position 2 (which is not complemented, as its distance to the msb is 6), we obtain "10100.." after which the rest of the bits stay same, so we get 1010001, which is 81's binary representation, thus a(121)=81. On the other hand, 125 = 1111101 in binary and the transducer complements the bits at positions 5, 3 and also the first zero at the position 1 (because at odd distance from the msb), yielding 101011., after which the remaining bit stays same, thus we get 1010111, which is 87's binary representation, thus a(125)=87.
		

References

  • R. I. Grigorchuk and A. Zuk, Spectral properties of a torsion free weakly branch group defined by a three state automaton, Contemporary Mathematics 298 (2002), 57--82.

Crossrefs

Inverse: A154442. a(n) = A154443(A153142(n)) = A054429(A154445(A054429(n))). Cf. A072376, A153141-A153142, A154435-A154436, A154439-A154448. Corresponds to A154451 in the group of Catalan bijections.

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A154443 Permutation of nonnegative integers induced by Basilica group generating wreath recursion: a = (b,1), b = s(a,1), starting from the inactive (fixing) state a.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 10, 11, 8, 9, 12, 13, 14, 15, 21, 20, 22, 23, 16, 17, 18, 19, 24, 25, 26, 27, 28, 29, 30, 31, 42, 43, 40, 41, 44, 45, 46, 47, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 85, 84, 86, 87, 80, 81, 82, 83
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Crossrefs

Inverse: A154444. a(n) = A154441(A153141(n)) = A054429(A154439(A054429(n))). Cf. A072376, A153141-A153142, A154435-A154436, A154439-A154448. Corresponds to A154453 in the group of Catalan bijections.

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A154445 Permutation of nonnegative integers induced by Basilica group generating wreath recursion: a = (b,1), b = s(a,1), starting from the active (swapping) state b.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 4, 5, 13, 12, 14, 15, 8, 9, 10, 11, 26, 27, 24, 25, 28, 29, 30, 31, 16, 17, 18, 19, 20, 21, 22, 23, 53, 52, 54, 55, 48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 62, 63, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 106, 107, 104, 105, 108, 109
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Crossrefs

Inverse: A154446. a(n) = A154439(A153141(n)) = A054429(A154441(A054429(n))). Cf. A072376, A153141-A153142, A154435-A154436, A154439-A154448. Corresponds to A154455 in the group of Catalan bijections.

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A154444 Permutation of nonnegative integers: The inverse of A154443.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 10, 11, 8, 9, 12, 13, 14, 15, 20, 21, 22, 23, 17, 16, 18, 19, 24, 25, 26, 27, 28, 29, 30, 31, 40, 41, 42, 43, 44, 45, 46, 47, 34, 35, 32, 33, 36, 37, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2009

Keywords

Crossrefs

Inverse: A154443. a(n) = A153142(A154442(n)) = A054429(A154440(A054429(n))). Cf. A072376, A153141-A153142, A154435-A154436, A154439-A154448. Corresponds to A154454 in the group of Catalan bijections.

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010
Previous Showing 11-20 of 23 results. Next