cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A072504 a(n) = LCM of divisors of n which are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 5, 2, 3, 4, 1, 30, 1, 4, 3, 2, 5, 12, 1, 2, 3, 20, 1, 6, 1, 4, 15, 2, 1, 12, 7, 10, 3, 4, 1, 6, 5, 28, 3, 2, 1, 60, 1, 2, 21, 8, 5, 6, 1, 4, 3, 70, 1, 24, 1, 2, 15, 4, 7, 6, 1, 40, 9, 2, 1, 84, 5, 2, 3, 8, 1, 90, 7, 4, 3, 2, 5, 24
Offset: 1

Views

Author

Amarnath Murthy, Jul 20 2002

Keywords

Examples

			a(20) = 4: the divisors of 20 are 1,2,4,5,10 and 20; a(20) = lcm(1,2,4) = 4.
		

Crossrefs

Programs

  • Haskell
    a072504 = foldl1 lcm . a161906_row  -- Reinhard Zumkeller, Mar 08 2013
  • Maple
    A072504 := proc(n)
        local ds ;
        ds := [] ;
        for d in numtheory[divisors](n) do
            if d^2 <= n then
                ds := [op(ds),d] ;
            end if;
        end do:
        ilcm(op(ds)) ;
    end proc:
    seq(A072504(n),n=1..20) ; # R. J. Mathar, Oct 03 2014
  • Mathematica
    Table[LCM@@Select[Divisors[n],#<=Sqrt[n]&],{n,100}] (* Harvey P. Dale, Aug 26 2014 *)

Extensions

More terms from Matthew Conroy, Sep 09 2002

A072501 Ratio of the product of divisors of n which are > n^(1/2) to product of divisors of n which are < n^(1/2).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 16, 9, 25, 11, 48, 13, 49, 25, 64, 17, 162, 19, 125, 49, 121, 23, 576, 25, 169, 81, 343, 29, 900, 31, 512, 121, 289, 49, 2916, 37, 361, 169, 1600, 41, 2401, 43, 1331, 405, 529, 47, 12288, 49, 1250, 289, 2197, 53, 6561, 121, 3136, 361, 841, 59
Offset: 1

Views

Author

Amarnath Murthy, Jul 20 2002

Keywords

Comments

It can easily be proved that the ratio is always an integer. a(n) = n if n is a prime or the square of a prime.
If 1/3 were chosen as the exponent instead of 1/2, then the sequence would begin: 1, 2, 3, 8, 5, 36, 7, 32, 27, .... If the exponent is decreased along 1/4, 1/5, ..., then the resulting sequence tends towards A007955. - Michel Marcus, Sep 17 2013

Examples

			a(20) = 25. The divisors of 20 are 1,2,4,5,10 and 20. a(20) = 10*20/2*4 = 25.
		

Crossrefs

Ratio of corresponding terms of A072500 and A072499.

Programs

  • Mathematica
    Table[Times @@ ((d = Divisors[n])^Sign[d - Sqrt[n]]), {n, 1, 59}] (* Ivan Neretin, May 01 2016 *)
  • PARI
    a(n) = {d = divisors(n); pa = 1; pb = 1; fordiv(n, d, if (d^2 < n, pa *= d); if (d^2 > n, pb *= d);); pb/pa;} \\ Michel Marcus, Sep 17 2013

Extensions

More terms from Sascha Kurz, Feb 02 2003

A363520 Product of the divisors of n that are < sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 8, 3, 2, 1, 24, 1, 2, 3, 8, 1, 30, 1, 8, 3, 2, 5, 24, 1, 2, 3, 40, 1, 36, 1, 8, 15, 2, 1, 144, 1, 10, 3, 8, 1, 36, 5, 56, 3, 2, 1, 720, 1, 2, 21, 8, 5, 36, 1, 8, 3, 70, 1, 1152, 1, 2, 15, 8, 7, 36, 1, 320, 3, 2, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 07 2023

Keywords

Examples

			The product of divisors of 16 that are < sqrt(16) = 4 is 1*2 = 2, so a(16) = 2.
		

Crossrefs

Cf. A070039 (sum of those divisors).

Programs

  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], #^2 < n &]; Array[a, 100]
  • PARI
    a(n) = vecprod(select(x->(x^2Michel Marcus, Jun 08 2023

Formula

a(n) = Product_{d|n, d
a(n) = Product_{k=1..floor(sqrt(n-1))} k^c(n/k), where c(m) = 1-ceiling(m)+floor(m).
a(n) = A072499(n)/A000196(n)^A010052(n) for n>=1.

A363521 Product of the divisors d of n such that sqrt(n) < d < n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 4, 1, 5, 1, 24, 1, 7, 5, 8, 1, 54, 1, 50, 7, 11, 1, 576, 1, 13, 9, 98, 1, 900, 1, 128, 11, 17, 7, 1944, 1, 19, 13, 1600, 1, 2058, 1, 242, 135, 23, 1, 36864, 1, 250, 17, 338, 1, 4374, 11, 3136, 19, 29, 1, 1080000, 1, 31, 189, 512, 13, 7986, 1, 578, 23
Offset: 1

Author

Wesley Ivan Hurt, Jun 07 2023

Keywords

Examples

			The divisors of 16 are {1,2,4,8,16} and the product of the divisors d of n such that sqrt(16) = 4 < d < 16 is 8, so a(16) = 8.
The divisors of 30 are {1,2,3,5,6,10,15,30} and the product of the divisors d of n such that sqrt(30) < d < 30 is 6*10*15 = 900, so a(30) = 900.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[If[n < d^2 < n^2, d, 1], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, Jun 08 2023 *)
  • PARI
    a(n) = vecprod(select(x->((sqrt(n)Michel Marcus, Jun 08 2023

Formula

a(n) = Product_{d|n, sqrt(n) < d < n} d.
a(n) = A007956(n)/A072499(n).
a(n) = A007955(n)/(n*A072499(n)).

A379872 Numbers k that are the product of the lower half of their nontrivial divisors.

Original entry on oeis.org

1, 24, 30, 40, 56, 64, 70, 105, 135, 154, 165, 182, 189, 195, 231, 273, 286, 297, 351, 357, 374, 385, 399, 418, 429, 442, 455, 459, 494, 513, 561, 595, 598, 621, 627, 646, 663, 665, 715, 729, 741, 759, 782, 805, 874, 875, 897, 935, 957, 969, 986, 1001, 1015, 1023, 1045, 1054, 1085
Offset: 1

Author

Tom Gadron, Jan 04 2025

Keywords

Comments

All terms under 1 million except 1, 2^6, 3^6, 5^6 and 7^6 have 6 nontrivial divisors, with p^6 for p prime having 5 nontrivial divisors, and so it seems that each term in the sequence is the product of three distinct numbers. - Edited by Robert Israel, Feb 04 2025
The majority of the terms are the product of 3 primes, but there are also terms of the form p*q*p^2, p*p^2*q, or p*p^2*p^3.
The first consecutive integers that appear in the sequence are a(45)=874 and a(46)=875.

Examples

			24 is a term because the nontrivial divisors of 24 are 2,3,4,6,8,12, and 24=2*3*4.
30 is a term because the nontrivial divisors of 30 are 2,3,5,6,10,15, and 30=2*3*5.
135 is a term because the nontrivial divisors of 135 are 3,5,9,15,27,45, and 135=3*5*9.
729 is a term because the nontrivial divisors of 729 are 3,9,27,81,243, and 729=3*9*27.
		

Crossrefs

Cf. A072499.

Programs

  • Java
    \\ See Gadron link.
    
  • Maple
    isA379872 := proc(n)
        local d;
        numtheory[divisors](n) minus {1,n} ;
        d := sort(convert(%,set)) ;
        mul( op(i,d),i=1..floor((nops(d)+1)/2)) ;
        if % = n then
            true;
        else
            false;
        end if;
    end proc:
    A379872 := proc(n)
        option remember ;
        if n =1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA379872(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A379872(n),n=1..60) ; # R. J. Mathar, Jan 29 2025
  • Mathematica
    q[k_] := Times @@ Select[Divisors[k], #^2 <= k &] == k; Select[Range[1200], q] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    isok(k) = my(d=divisors(k)); d=setminus(d, Set([1,k])); vecprod(Vec(d, #d\2 + #d%2)) == k; \\ Michel Marcus, Jan 05 2025

A382486 Product of distinct prime divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 5, 2, 3, 2, 1, 30, 1, 2, 3, 2, 5, 6, 1, 2, 3, 10, 1, 6, 1, 2, 15, 2, 1, 6, 7, 10, 3, 2, 1, 6, 5, 14, 3, 2, 1, 30, 1, 2, 21, 2, 5, 6, 1, 2, 3, 70, 1, 6, 1, 2, 15, 2, 7, 6, 1, 10, 3, 2, 1, 42, 5
Offset: 1

Author

Ilya Gutkovskiy, Apr 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Select[Divisors[n], PrimeQ[#] && # <= Sqrt[n] &], {n, 1, 85}]
  • PARI
    a(n) = vecprod(select(x->x<=sqrt(n), factor(n)[,1])); \\ Michel Marcus, Apr 17 2025

Formula

a(p) = 1, for prime p.
Previous Showing 11-16 of 16 results.