A229018 Primes of the form (3*x + 2)*2^x - 1.
31, 223, 1279, 3276799, 14680063, 420906795007, 2357352929951743, 32326824857489154029020587706017980088319, 173918694842377447266238495093237679339055972614143
Offset: 1
Keywords
Examples
a(2) = 223: for x=4: R= x*2^x-1 = 4*2^4-1 = 63 and S= (x+1)*2^(x+1)-1 = 5*2^5-1 = 159. R+S+1 = 63+159+1 = 223 which is prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..19
- Wikipedia, Woodall number
Programs
-
Maple
KD:= proc() local a,b,d; a:= x*2^x-1; b:=(x+1)*2^(x+1)-1; d:=a+b+1; if isprime(d) then RETURN(d): fi; end: seq(KD(),x=1..1000);
-
Mathematica
Select[Table[(3*x + 2)*2^x - 1, {x, 200}], PrimeQ] (* T. D. Noe, Sep 20 2013 *)
Comments