cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A276124 a(0) = a(1) = a(2) = a(3) = 1; for n > 3, a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)*a(n-3))/a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 4, 22, 589, 399253, 41144206447, 77387327118194895379, 10169897514576967837097322386922878932, 259050897146323086186965020577200627526185475088368701480903471601830
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 3]^2 + a[n - 1] a[n - 2] a[n - 3])/a[n - 4], a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(0){|s, i| s + i * i} + a[1..-1].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276124(n)
      A(4, n)
    end # Seiichi Manyama, Aug 21 2016

Formula

a(n) = 8*a(n-1)*a(n-2)*a(n-3)-a(n-1)*a(n-2)-a(n-1)*a(n-3)-a(n-2)*a(n-3)-a(n-4).

A113848 a(1) = a(2) = 1, a(n+2) = 2*a(n) + a(n+1)^2.

Original entry on oeis.org

1, 1, 3, 11, 127, 16151, 260855055, 68045359719085327, 4630170979299719971778494028407039, 21438483297549327871400796194793048411084076762817293736211302918175
Offset: 1

Views

Author

Jonathan Vos Post, Jan 24 2006

Keywords

Comments

In this sequence the primes begin a(3) = 3, a(4) = 11, a(5) = 127, a(9) = 4630170979299719971778494028407039.

Examples

			a(1) = 1 by definition.
a(2) = 1 by definition.
a(3) = 2*1 + 1^2 = 3.
a(4) = 2*1 + 3^2 = 11.
a(5) = 2*3 + 11^2 = 127.
a(6) = 2*11 + 127^2 = 16151.
		

Crossrefs

Programs

Formula

a(1) = a(2) = 1, for n>2: a(n) = 2*a(n-2) + a(n-1)^2. a(1) = a(2) = 1, for n>0: a(n+2) = 2*a(n) + a(n+1)^2.
a(n) ~ c^(2^n), where c = 1.163464453662702696843453679269882816346479873363677551158525103156732040997... . - Vaclav Kotesovec, Dec 18 2014

A113592 Array of quadratic pseudofibonacci sequences, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 11, 1, 4, 11, 40, 127, 1, 5, 18, 127, 1612, 16151, 1, 6, 27, 332, 16151, 2598264, 260855055, 1, 7, 38, 739, 110260
Offset: 1

Views

Author

Jonathan Vos Post, Jan 26 2006

Keywords

Comments

Row 1 is A113848. Column 1 is A000012 (the simplest sequence of positive numbers: the all 1's sequence). Column 2 is A000027 (the natural numbers) = n. Column 3 is A010000 = A059100(n+1) = n^2 + 2. Column 4 is 2*n + (n^2 + 2)^2 = n^4 + 4*n^2 + 2*n + 4. Column 5 is 2*(n^2 + 2) + (n^4 + 4*n^2 + 2*n + 4)^2 = n^8 + 8*n^6 + 4*n^5 + 24*n^4 + 16*n^3 + 38*n^2 + 16*n + 20.

Examples

			Table (upper left corner):
1...1...3...11...127....16151...260855055...
1...2...6...40...1612...2598624.675284696600...
1...3...11..127..16151..260855055...
1...4...18..332..110260.12157268264...
1...5...27..739..546175...
1...6...38..1456.2120012...
1...7...51..2615.6838327...
1...8...66..4372.19114516...
1...9...83..6907.47706815
1..10..102..10424.108659980...
		

Crossrefs

Formula

Antidiagonals of table: T(i, j) = j-th iteration of a(i, 0) = 1, a(i, 1) = i and for j>1: a(i, j) = 2*a(i, j-2) + a(i, j-1)^2.
Previous Showing 11-13 of 13 results.