A276124
a(0) = a(1) = a(2) = a(3) = 1; for n > 3, a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)*a(n-3))/a(n-4).
Original entry on oeis.org
1, 1, 1, 1, 4, 22, 589, 399253, 41144206447, 77387327118194895379, 10169897514576967837097322386922878932, 259050897146323086186965020577200627526185475088368701480903471601830
Offset: 0
-
RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 3]^2 + a[n - 1] a[n - 2] a[n - 3])/a[n - 4], a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)
-
def A(m, n)
a = Array.new(m, 1)
ary = [1]
while ary.size < n + 1
i = a[1..-1].inject(0){|s, i| s + i * i} + a[1..-1].inject(:*)
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276124(n)
A(4, n)
end # Seiichi Manyama, Aug 21 2016
A113848
a(1) = a(2) = 1, a(n+2) = 2*a(n) + a(n+1)^2.
Original entry on oeis.org
1, 1, 3, 11, 127, 16151, 260855055, 68045359719085327, 4630170979299719971778494028407039, 21438483297549327871400796194793048411084076762817293736211302918175
Offset: 1
a(1) = 1 by definition.
a(2) = 1 by definition.
a(3) = 2*1 + 1^2 = 3.
a(4) = 2*1 + 3^2 = 11.
a(5) = 2*3 + 11^2 = 127.
a(6) = 2*11 + 127^2 = 16151.
Cf.
A000278,
A000283,
A014253,
A063827,
A072878,
A112957,
A112958,
A112959,
A112960,
A112961,
A112969,
A113785.
-
Join[{a=1,b=1},Table[c=1*b^2+2*a;a=b;b=c,{n,10}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
RecurrenceTable[{a[1]==1, a[2]==1, a[n] == 2*a[n-2] + a[n-1]^2}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
A113592
Array of quadratic pseudofibonacci sequences, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 11, 1, 4, 11, 40, 127, 1, 5, 18, 127, 1612, 16151, 1, 6, 27, 332, 16151, 2598264, 260855055, 1, 7, 38, 739, 110260
Offset: 1
Table (upper left corner):
1...1...3...11...127....16151...260855055...
1...2...6...40...1612...2598624.675284696600...
1...3...11..127..16151..260855055...
1...4...18..332..110260.12157268264...
1...5...27..739..546175...
1...6...38..1456.2120012...
1...7...51..2615.6838327...
1...8...66..4372.19114516...
1...9...83..6907.47706815
1..10..102..10424.108659980...
Cf.
A000012,
A000027,
A000278,
A000283,
A010000,
A014253,
A059100,
A063827,
A072878,
A112957,
A112958,
A112959,
A112960,
A112961,
A112969,
A113785.
Comments