cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A291696 Expansion of Product_{k>=1} (1-x^(k^2))^(k^2).

Original entry on oeis.org

1, -1, 0, 0, -4, 4, 0, 0, 6, -15, 9, 0, -4, 40, -36, 0, -15, -39, 90, -36, 64, -28, -180, 144, -96, 206, 106, -300, 148, -540, 332, 480, -232, 610, -1029, -189, 114, -86, 1880, -1068, 24, -921, -1545, 2466, -300, 2858, -1514, -3180, 976, -4121, 5590, 1995
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1-x^(k^2))^(k^2), {k,1,nmax}], {x,0,nmax}], x]

A294580 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - j^k*x^j)^j.

Original entry on oeis.org

1, 1, -1, 1, -1, -2, 1, -1, -4, -1, 1, -1, -8, -5, 0, 1, -1, -16, -19, -3, 4, 1, -1, -32, -65, -21, 23, 4, 1, -1, -64, -211, -111, 139, 44, 7, 1, -1, -128, -665, -525, 863, 448, 104, 3, 1, -1, -256, -2059, -2343, 5419, 4316, 1414, 70, -2, 1, -1, -512, -6305, -10101, 34103, 40024, 18164, 1206, -93, -9
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2017

Keywords

Examples

			Square array begins:
    1,  1,   1,    1,    1, ...
   -1, -1,  -1,   -1,   -1, ...
   -2, -4,  -8,  -16,  -32, ...
   -1, -5, -19,  -65, -211, ...
    0, -3, -21, -111, -525, ...
		

Crossrefs

Columns k=0..2 give A073592, A266964, A294581.
Rows n=0..3 give A000012, (-1)*A000012, (-1)*A000079(n+1), (-1)*A001047(n+1).

Formula

A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(2+k*j/d)) * A(n-j,k) for n > 0.

A298986 a(n) = [x^n] Product_{k>=1} (1 - n*x^k)^k.

Original entry on oeis.org

1, -1, -4, 9, 48, 100, -756, -3479, -1600, 24462, 225900, 364573, -643536, -9251736, -36989316, -32397975, 165039872, 1725828525, 5338814652, 8082713829, -26321848400, -233434232766, -811526778964, -1731126953532, 1151302859712, 23632432765000, 113461901639788, 287935019845749
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 27}]

A283242 Expansion of exp( Sum_{n>=1} -sigma_2(2*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -5, 2, 15, 12, -36, -92, -17, 167, 358, 283, -293, -1321, -2012, -1101, 2299, 7296, 10505, 6901, -7705, -31240, -52490, -51336, -6032, 91521, 217064, 303776, 250595, -36282, -575622, -1234465, -1684515, -1448538, -66980, 2610835, 6087681, 8990575
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. A283224 (exp( Sum_{n>=1} sigma_2(2*n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(2*n)*x^n/n ): A115110 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} -sigma_2(m*n)*x^n/n ): A073592 (m=1), this sequence (m=2), A283243 (m=3).

Formula

a(n) = -(1/n)*Sum_{k=1..n} sigma_2(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283243 Expansion of exp( Sum_{n>=1} -sigma_2(3*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -10, 25, 53, -270, -77, 1057, 610, -2031, -5438, -1953, 17236, 34121, 3351, -103369, -195850, -55471, 468448, 1067785, 764094, -1430780, -4974559, -6242563, 334620, 16946199, 34459888, 29243953, -24503978, -124514921, -205795663, -140256312, 191109263
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. A283237 (sigma_2(3*n)), A283238 (exp( Sum_{n>=1} sigma_2(3*n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(3*n)*x^n/n ): A185654 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} -sigma_2(m*n)*x^n/n ): A073592 (m=1), A283242 (m=2), this sequence (m=3).

Programs

  • PARI
    A283243_vec(m)=Vec(exp(sum(n=1,m,-sigma(3*n,2)*x^n/n)+x*O(x^m))) \\ Yields m+1 terms a(0..m). - M. F. Hasler, Mar 05 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} sigma_2(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A305205 a(n) = [x^n] exp(-Sum_{k>=1} x^k/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, -1, -2, -3, -4, 30, 274, 1841, 9358, 32463, -41557, -2265846, -28939286, -272101778, -2038274408, -10494221259, 9056975574, 1244820826687, 22703501504125, 299864024917632, 3221417281127823, 26849622543478562, 110101743392268978, -1810492304600468063
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[-Sum[x^k/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[(1 - x^k)^Binomial[n + k - 2, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} (1 - x^k)^binomial(n+k-2,n-1).

A299019 Expansion of Product_{k>=1} (1 - x^k)^(k+1).

Original entry on oeis.org

1, -2, -2, 2, 3, 6, -1, -2, -10, -14, -7, -2, 11, 26, 43, 30, 28, -6, -40, -92, -128, -132, -115, -48, 54, 200, 339, 484, 499, 476, 274, -32, -501, -998, -1539, -1924, -2042, -1838, -1139, 12, 1664, 3540, 5588, 7258, 8392, 8230, 6812, 3480, -1472, -8150, -15737, -23670, -30478
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2018

Keywords

Comments

Convolution of A010815 and A073592.
Convolution inverse of A005380.

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Product[(1 - x^k)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 52; CoefficientList[Series[Exp[-Sum[(DivisorSigma[1, k] + DivisorSigma[2, k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[d (d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

Formula

G.f.: exp(-Sum_{k>=1} (sigma_1(k) + sigma_2(k))*x^k/k).

A258412 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^k dx.

Original entry on oeis.org

2, 9, 8, 7, 8, 3, 3, 6, 5, 1, 0, 6, 5, 6, 7, 2, 9, 8, 7, 7, 0, 9, 5, 3, 7, 7, 2, 1, 1, 4, 0, 0, 7, 0, 9, 7, 3, 6, 0, 9, 2, 1, 8, 2, 5, 2, 5, 0, 1, 4, 7, 4, 3, 3, 4, 9, 0, 4, 5, 1, 1, 7, 4, 9, 9, 1, 7, 8, 0, 5, 0, 0, 4, 8, 9, 6, 7, 4, 3, 5, 2, 2, 0, 5, 8, 1, 0, 5, 0, 9, 8, 7, 2, 2, 4, 0, 2, 6, 3, 5, 0, 7, 6, 1, 6, 4
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

Integral_{x=0..1} Product_{k=1..n} (1+x^k)^k dx ~ 3*2^(n*(n+1)/2 + 1)/n^3.
Integral_{x=0..1} Product_{k=1..n} (1+x^k) dx ~ 2^(n+2)/n^2.
Integral_{x=0..1} Product_{k>=1} (1-x^k) dx = A258232 = 0.3684125359314...
Integral_{x=0..1} Product_{k=1..n} (1-x^k)^n dx ~ 1/n.
Integral_{x=0..1} Product_{k=1..n} (1+x^k)^n dx ~ 2^(n^2 + 2)/n^3.

Examples

			0.298783365106567298770953772114...
		

Crossrefs

Extensions

More digits from Vaclav Kotesovec, Oct 10 2023

A298599 Expansion of Product_{k>=2} (1 - x^k)^k.

Original entry on oeis.org

1, 0, -2, -3, -3, 1, 5, 12, 15, 13, 4, -13, -38, -62, -75, -76, -44, 17, 114, 225, 337, 411, 419, 311, 68, -324, -836, -1405, -1947, -2305, -2338, -1865, -787, 1001, 3396, 6261, 9216, 11785, 13281, 13036, 10285, 4502, -4619, -16918, -31657, -47463, -62182, -73112, -76925
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Comments

Partial sums of A073592.
Euler transform of sequence [-2, -3, -4, -5, -6, -7, -8, -9, ...].

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[(1 - x^k)^k, {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 - x^k)^k.

A300521 Expansion of Product_{k>=1} (1 - x^prime(k))^prime(k).

Original entry on oeis.org

1, 0, -2, -3, 1, 1, 3, 0, 9, 8, 4, -31, -12, -13, 20, -13, 48, -17, 74, -87, 8, -143, 175, -174, 349, -164, 369, -651, 520, -1004, 1142, -1218, 1652, -1739, 3291, -3933, 3546, -5743, 6170, -8022, 11435, -13230, 17196, -18706, 22958, -31884, 38420, -49802, 58916
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[(1 - x^Prime[k])^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[-Sum[DivisorSum[k, Boole[PrimeQ[#]] #^2 &] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^A000040(k))^A000040(k).
G.f.: exp(-Sum_{k>=1} A005063(k)*x^k/k).
Previous Showing 21-30 of 35 results. Next