A074355
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,3).
Original entry on oeis.org
0, 0, 0, 3, 15, 45, 147, 402, 1134, 2991, 7917, 20367, 52167, 131748, 330876, 824187, 2042763, 5035473, 12361755, 30226614, 73664298, 178971879, 433649769, 1048133619, 2527706127, 6083434824, 14613750648, 35045236083, 83909261319
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=4, nu(3)=7+3q, nu(4)=19+15q+12q^2, nu(5)=40+45q+42q^2+30q^3+9q^4, so the coefficients of q^1 are 0,0,0,3,15,45.
-
nu := proc(n,b,lambda) option remember ; if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1,b,lambda)+lambda*nu(n-2,b,lambda)*add(q^i,i=0..n-2) ; fi ; end:
A074355 := proc(n) local b,lambda,thisnu ; b := 1 ; lambda := 3 ; thisnu := nu(n,b,lambda) ; RETURN( coeftayl(thisnu,q=0,1) ) ; end: # R. J. Mathar, Mar 20 2007
-
nu[n_, b_, lambda_] := nu[n, b, lambda] = Which[ n == 0, 1, n == 1, b, True, b*nu[n - 1, b, lambda] + lambda*nu[n - 2, b, lambda]*Sum[q^i, {i, 0, n - 2}]];
a[n_] := a[n] = Coefficient[nu[n, 1, 3], q, 1];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 30}] (* Jean-François Alcover, Nov 23 2017, from 1st Maple program *)
A074361
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(3,1).
Original entry on oeis.org
0, 0, 0, 3, 19, 93, 407, 1674, 6618, 25455, 95953, 356151, 1305887, 4741092, 17072484, 61055787, 217074895, 767882865, 2704365719, 9487509102, 33170122494, 115614094071, 401864286637, 1393378817259, 4820368210175
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=3, nu(2)=10, nu(3)=33+3q, nu(4)=109+19q+10q^2, nu(5)=360+93q+66q^2+36q^3+3q^4, so the coefficients of q^1 are 0,0,0,3,19,93.
-
CoefficientList[Series[(x^4+3x^3)/(1-3x-x^2)^2,{x,0,30}],x] (* or *) Join[{0},LinearRecurrence[{6,-7,-6,-1},{0,0,3,19},30]] (* Harvey P. Dale, Jan 16 2012 *)
More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002
A074083
Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 14, 39, 97, 224, 494, 1051, 2177, 4412, 8784, 17228, 33360, 63886, 121164, 227833, 425147, 787916, 1451198, 2657821, 4842727, 8782230, 15857426, 28517864, 51095760, 91232520, 162372682, 288115147, 509790277, 899630376
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^3 are 0,0,0,0,0,4.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (4, -2, -8, 5, 8, -2, -4, -1).
-
b=1; lambda=1; expon=3; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0, 0, 0}, LinearRecurrence[{4, -2, -8, 5, 8, -2, -4, -1}, {0, 0, 4, 14, 39, 97, 224, 494}, 31]] (* Jean-François Alcover, Jan 27 2019 *)
A074088
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,3).
Original entry on oeis.org
0, 0, 0, 0, 21, 120, 585, 2508, 10122, 39042, 145974, 532704, 1907451, 6725004, 23407287, 80591148, 274899288, 930128646, 3124838844, 10432356000, 34634029713, 114403303008, 376184538165, 1231890463020, 4018920819606
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=7, nu(3)=20+6q, nu(4)=61+33q+21q^2, nu(5)=182+144q+120q^2+78q^3+18q^4, so the coefficients of q^2 are 0,0,0,0,21,120.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (6,-3,-28,9,54,27).
-
I:=[0,0,21,120,585,2508]; [0,0] cat [n le 6 select I[n] else 6*Self(n-1) -3*Self(n-2) -28*Self(n-3) +9*Self(n-4) +54*Self(n-5) +27*Self(n-6): n in [1..30]]; // G. C. Greubel, May 26 2018
-
b=2; lambda=3; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0,0},LinearRecurrence[{6,-3,-28,9,54,27},{0,0,21,120,585,2508},40]] (* Harvey P. Dale, Apr 28 2012 *)
-
x='x+O('x^30); concat([0,0,0,0], Vec((21*x^4 -6*x^5 -72*x^6 -54*x^7)/(1-2*x-3*x^2)^3)) \\ G. C. Greubel, May 26 2018
A074353
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,2).
Original entry on oeis.org
0, 0, 0, 0, 6, 20, 70, 196, 542, 1396, 3526, 8628, 20766, 49092, 114598, 264356, 603998, 1368148, 3076166, 6870740, 15256158, 33696804, 74073510, 162127940, 353460766, 767816500, 1662394310, 3588252916, 7723318942, 16580031876, 35506388646, 75864499428
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=3, nu(3)=5+2q, nu(4)=11+8q+6q^2, nu(5)=21+22q+20q^2+14q^3+4q^4, so the coefficients of q^2 are 0,0,0,0,6,20.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-11,-6,12,8).
-
LinearRecurrence[{3, 3, -11, -6, 12, 8}, {0, 0, 0, 0, 6, 20, 70, 196}, 50] (* Paolo Xausa, Jan 28 2025 *)
-
concat(vector(4), Vec(2*x^4*(3 + x - 4*x^2 - 4*x^3) / ((1 + x)^3*(1 - 2*x)^3) + O(x^40))) \\ Colin Barker, Nov 18 2017
A074356
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,3).
Original entry on oeis.org
0, 0, 0, 0, 12, 42, 180, 561, 1833, 5373, 15798, 44367, 123561, 336243, 906054, 2408094, 6344832, 16561824, 42922602, 110472933, 282678423, 719404803, 1822117962, 4594816221, 11540742615, 28880919975, 72033463644, 179107709004
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=4, nu(3)=7+3q, nu(4)=19+15q+12q^2, nu(5)=40+45q+42q^2+30q^3+9q^4, so the coefficients of q^2 are 0,0,0,0,12,42.
-
nu := proc(n,b,lambda) if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1,b,lambda)+lambda*nu(n-2,b,lambda)*add(q^i,i=0..n-2) ; fi ; end: A074356 := proc(n) local b,lambda,thisnu ; b := 1 ; lambda := 3 ; thisnu := nu(n,b,lambda) ; RETURN( coeftayl(thisnu,q=0,2) ) ; end: for n from 0 to 40 do printf("%d, ",A074356(n) ) ; od ; # R. J. Mathar, Mar 20 2007
-
nu[n_, b_, lambda_] := nu[n, b, lambda] = Which[n == 0, 1, n == 1, b, True, b*nu[n - 1, b, lambda] + lambda*nu[n - 2, b, lambda]*Sum[q^i, {i, 0, n - 2}]];
a[n_] := a[n] = Coefficient[nu[n, 1, 3], q, 2];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 30}] (* Jean-François Alcover, Nov 23 2017, from Maple *)
A074359
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,2).
Original entry on oeis.org
0, 0, 0, 0, 12, 64, 280, 1088, 3968, 13856, 46912, 155136, 503616, 1610496, 5086336, 15895552, 49229312, 151275008, 461662208, 1400356864, 4224703488, 12683452416, 37911164928, 112865394688, 334788444160, 989756825600
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3)=16+4q, nu(4)=44+20q+12q^2, nu(5)=120+80q+64q^2+40q^3+8q^4, so the coefficients of q^2 are 0,0,0,0,12,64.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (6, -6, -16, 12, 24, 8).
-
nu := proc(n,b,lambda) if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1,b,lambda)+lambda*nu(n-2,b,lambda)*add(q^i,i=0..n-2) ; fi ; end: A074359 := proc(n) local b,lambda,thisnu ; b := 2 ; lambda := 2 ; thisnu := nu(n,b,lambda) ; RETURN( coeftayl(thisnu,q=0,2) ) ; end: for n from 0 to 40 do printf("%d, ",A074359(n) ) ; od ; # R. J. Mathar, Mar 20 2007
-
Join[{0, 0}, LinearRecurrence[{6, -6, -16, 12, 24, 8}, {0, 0, 12, 64, 280, 1088}, 24]] (* Jean-François Alcover, Sep 23 2017 *)
A074085
Coefficient of q^2 in nu(n), where nu(0) = 1, nu(1) = b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n - 2))*nu(n-2) with (b,lambda) = (2,1).
Original entry on oeis.org
0, 0, 0, 0, 5, 24, 91, 308, 978, 2978, 8802, 25440, 72251, 202316, 559941, 1534548, 4170256, 11250630, 30158900, 80389600, 213204513, 562896832, 1480086111, 3877337556, 10123000126, 26347306474, 68378847990, 176994780672
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0) = 1, nu(1) = 2, nu(2) = 5, nu(3) = 12 + 2*q, nu(4) = 29 + 9*q + 5*q^2, nu(5) = 70 + 32q + 24*q^2 + 14*q^3 + 2*q^4, so the coefficients of q^2 are 0,0,0,0,5,24.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (6, -9, -4, 9, 6, 1).
-
b=2; lambda=1; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0,0}, LinearRecurrence[{6, -9, -4, 9, 6, 1}, {0, 0, 5, 24, 91, 308}, 30]] (* Jean-François Alcover, Dec 13 2018 *)
A074362
Coefficient of q^2 in nu(n), where nu(0) = 1, nu(1) = b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n-2))*nu(n-2) with (b,lambda) = (3,1).
Original entry on oeis.org
0, 0, 0, 0, 10, 66, 336, 1527, 6513, 26667, 106102, 413265, 1583331, 5986689, 22392606, 83002842, 305308666, 1115587020, 4052786850, 14648359515, 52705460583, 188868467853, 674332868566, 2399653030899, 8513523719661
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0) = 1, nu(1) = 3, nu(2) = 10, nu(3) = 33 + 3*q, nu(4) = 109 + 19*q + 10*q^2, nu(5) = 360 + 93*q + 66*q^2 + 36*q^3 + 3*q^4, so the coefficients of q^1 are 0,0,0,0,10,66.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (9, -24, 9, 24, 9, 1).
-
Join[{0, 0}, LinearRecurrence[{9, -24, 9, 24, 9, 1}, {0, 0, 10, 66, 336, 1527}, 30]] (* Jean-François Alcover, Dec 13 2018 *)
More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002
Comments