cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A160402 Primes made up of all distinct digits except 0 and 1.

Original entry on oeis.org

23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657, 23495867, 23496587, 23498567, 23546879, 23546987, 23548697, 23564897, 23564987, 23567849, 23569487, 23576489, 23584679, 23587649, 23589647, 23594687
Offset: 1

Views

Author

Lekraj Beedassy, May 13 2009

Keywords

Comments

More precisely, "primes made up of all distinct digits from 2 to 9, each occurring once." Since this restricts the number of digits to 8, the sequence is finite.
The last term of this sequence is a(3098) = 98745623. - Nathaniel Johnston, Jun 24 2011
Also numbers n such that the list of divisors of n contains all the digits 1-9 and each digit appears exactly once (in base 10). There are no composite numbers with this property. Numbers n such that A243360(n) = 987654321. - Jaroslav Krizek, Jun 19 2014

Crossrefs

Cf. A029743, A106116. Subsequence of A074665.

Programs

  • Magma
    [n: n in [1..100000000] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 987654321] // Jaroslav Krizek, Jun 19 2014
  • Maple
    A160402:={}: p:=23456789: while p<=98765432 do d:=convert(p,base,10): ddig:=true: for k from 0 to 9 do if((k<=1 and numboccur(k,d)>0) or (k>=2 and numboccur(k,d)<>1))then ddig:=false:break: fi: od: if(ddig)then A160402:=A160402 union {p}: fi: p:=nextprime(p): od: op(sort(convert(A160402,list))); # Nathaniel Johnston, Jun 24 2011

Extensions

Keywords "base,fini" added by R. J. Mathar, May 14 2009

A235160 Primes which have one or more occurrences of exactly eight different digits.

Original entry on oeis.org

10234589, 10234759, 10234897, 10235647, 10235749, 10235867, 10236547, 10236857, 10237849, 10238467, 10238597, 10238647, 10238759, 10238957, 10239487, 10239587, 10239847, 10243567, 10243657, 10243759, 10243769, 10243867, 10243897, 10245397
Offset: 1

Views

Author

Colin Barker, Jan 04 2014

Keywords

Comments

The first term having a repeated digit is 100234657.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[664580,68*10^4]],Count[DigitCount[#],0]==2&] (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    s=[]; forprime(n=10000000, 10250000, if(#vecsort(eval(Vec(Str(n))),,8)==8, s=concat(s, n))); s

A255596 Distinct-digit primes that are the concatenation of m and prime(m) for some number m.

Original entry on oeis.org

23, 47, 613, 1237, 1759, 27103, 35149, 45197, 57269, 58271, 61283, 85439, 93487, 145829, 147853, 2371489, 3152087, 3902687, 4062791, 5614073, 5914327, 7405639, 8356421
Offset: 1

Views

Author

Zak Seidov, Mar 25 2015

Keywords

Examples

			The last term is a(23) = 8356421 (prime) because all 7 digits are different and m=835 with 6421=prime(m).
		

Crossrefs

Programs

  • Mathematica
    Select[FromDigits[IntegerDigits@ #~Join~IntegerDigits[Prime@ #]] & /@
    Range@ 1200, PrimeQ@ # && Max@ DigitCount@ # == 1 &] (* Michael De Vlieger, Mar 25 2015 *)

A256339 Distinct-digit primes that are concatenation of prime(m) and m for some m.

Original entry on oeis.org

53, 239, 6719, 7321, 4073561, 6257813, 6521843, 85271063
Offset: 1

Views

Author

Zak Seidov, Mar 25 2015

Keywords

Comments

The last term is a(8) = 85271063 (prime) because all 8 digits are different and m=1063 with 8527=prime(m).

Crossrefs

Subsequence of A029743 (distinct-digit primes).

Programs

  • Mathematica
    Select[FromDigits[IntegerDigits[Prime@ #]~Join~IntegerDigits@ #] & /@
    Range@ 1200, PrimeQ@ # && Max@ DigitCount@ # == 1 &] (* Michael De Vlieger, Mar 25 2015 *)
Previous Showing 11-14 of 14 results.