A160402
Primes made up of all distinct digits except 0 and 1.
Original entry on oeis.org
23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657, 23495867, 23496587, 23498567, 23546879, 23546987, 23548697, 23564897, 23564987, 23567849, 23569487, 23576489, 23584679, 23587649, 23589647, 23594687
Offset: 1
-
[n: n in [1..100000000] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 987654321] // Jaroslav Krizek, Jun 19 2014
-
A160402:={}: p:=23456789: while p<=98765432 do d:=convert(p,base,10): ddig:=true: for k from 0 to 9 do if((k<=1 and numboccur(k,d)>0) or (k>=2 and numboccur(k,d)<>1))then ddig:=false:break: fi: od: if(ddig)then A160402:=A160402 union {p}: fi: p:=nextprime(p): od: op(sort(convert(A160402,list))); # Nathaniel Johnston, Jun 24 2011
A235160
Primes which have one or more occurrences of exactly eight different digits.
Original entry on oeis.org
10234589, 10234759, 10234897, 10235647, 10235749, 10235867, 10236547, 10236857, 10237849, 10238467, 10238597, 10238647, 10238759, 10238957, 10239487, 10239587, 10239847, 10243567, 10243657, 10243759, 10243769, 10243867, 10243897, 10245397
Offset: 1
-
Select[Prime[Range[664580,68*10^4]],Count[DigitCount[#],0]==2&] (* Harvey P. Dale, Apr 05 2019 *)
-
s=[]; forprime(n=10000000, 10250000, if(#vecsort(eval(Vec(Str(n))),,8)==8, s=concat(s, n))); s
A255596
Distinct-digit primes that are the concatenation of m and prime(m) for some number m.
Original entry on oeis.org
23, 47, 613, 1237, 1759, 27103, 35149, 45197, 57269, 58271, 61283, 85439, 93487, 145829, 147853, 2371489, 3152087, 3902687, 4062791, 5614073, 5914327, 7405639, 8356421
Offset: 1
The last term is a(23) = 8356421 (prime) because all 7 digits are different and m=835 with 6421=prime(m).
A256339
Distinct-digit primes that are concatenation of prime(m) and m for some m.
Original entry on oeis.org
53, 239, 6719, 7321, 4073561, 6257813, 6521843, 85271063
Offset: 1
Subsequence of
A029743 (distinct-digit primes).
Comments