A299409 Solution (e(n)) of the system of 5 complementary equations in Comments.
10, 26, 45, 62, 78, 94, 114, 130, 146, 162, 180, 198, 214, 230, 248, 266, 282, 298, 317, 334, 350, 366, 386, 402, 418, 434, 451, 470, 486, 502, 520, 538, 554, 570, 589, 606, 622, 638, 658, 674, 690, 706, 725, 742, 758, 774, 792, 810, 826, 842, 861, 878, 894
Offset: 0
Examples
n: 0 1 2 3 4 5 6 7 8 9 a: 1 5 9 14 18 22 27 31 35 39 b: 2 6 11 15 19 23 28 32 36 40 c: 3 7 12 16 20 24 29 33 37 41 d: 4 8 13 17 21 25 30 34 38 42 e: 10 26 45 62 78 94 114 130 146 162
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Wieb Bosma, Rene Bruin, Robbert Fokkink, Jonathan Grube, Anniek Reuijl, and Thian Tromp, Using Walnut to solve problems from the OEIS, arXiv:2503.04122 [math.NT], 2025.
- Robbert Fokkink and Gandhar Joshi, Anti-recurrence sequences, arXiv:2506.13337 [math.NT], 2025. See pp. 2, 11, 18.
Programs
-
Mathematica
(* Program 1: sequences a,b,c,d,e generated from the complementary equations *) z = 200; mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]; Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]], AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]], AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]], AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]], AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}]; Take[a, 100] (* A299405 *) Take[b, 100] (* A299637 *) Take[c, 100] (* A299638 *) Take[d, 100] (* A299641 *) Take[e, 100] (* A299409 *) (* Program 2: sequence e generated by iterating a morphism *) morph = Nest[Flatten[# /. Thread[{0, 1, 2, 3} -> {{2, 3, 3, 1}, {2, 3, 2, 1}, {2, 3, 1, 1}, {2, 3, 0, 1}}]] &, {0}, 9]; A299409 = Accumulate[Prepend[Drop[Flatten[morph /. Thread[{0, 1, 2, 3} -> {{1, 1, 2, 4}, {1, 1, 3, 3}, {1, 1, 4, 2}, {1, 1, 5, 1}}]], 1] + 15, 10]]; Take[A299409, 100] (* Peter J. C. Moses, May 04 2018 *)
Comments