Original entry on oeis.org
1, 6, 33, 208, 1505, 12330, 112973, 1145568, 12742389, 154308350, 2021296189, 28480485024, 429565218277, 6905903216562, 117891260108985, 2129869055824000, 40600135597843817, 814383095809997142, 17147155400516728601, 378137512431282658800
Offset: 0
-
q[n_, k_] := (k + 1) (n + 1); (* A075362 *)
r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
p[n_, k_] := (k + 1) (n + 1); (* A075362 *)
v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
Table[v[n], {n, 0, 20}] (* A193665 *)
TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
Table[r[k], {k, 0, 8}] (* A193665 *)
TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]
A223544
T(n, k) = n*k - 1.
Original entry on oeis.org
0, 1, 3, 2, 5, 8, 3, 7, 11, 15, 4, 9, 14, 19, 24, 5, 11, 17, 23, 29, 35, 6, 13, 20, 27, 34, 41, 48, 7, 15, 23, 31, 39, 47, 55, 63, 8, 17, 26, 35, 44, 53, 62, 71, 80, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120, 11, 23, 35, 47, 59, 71, 83, 95, 107, 119, 131, 143
Offset: 1
Triangle begins as:
0;
1, 3;
2, 5, 8;
3, 7, 11, 15;
4, 9 14, 19, 24;
5, 11, 17, 23, 29, 35;
6, 13, 20, 27, 34, 41, 48;
7, 15, 23, 31, 39, 47, 55, 63;
8, 17, 26, 35, 44, 53, 62, 71, 80;
A110749
Triangle read by rows with the n-th row containing the first n multiples of n with digits reversed.
Original entry on oeis.org
1, 2, 4, 3, 6, 9, 4, 8, 21, 61, 5, 1, 51, 2, 52, 6, 21, 81, 42, 3, 63, 7, 41, 12, 82, 53, 24, 94, 8, 61, 42, 23, 4, 84, 65, 46, 9, 81, 72, 63, 54, 45, 36, 27, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 22, 33, 44, 55, 66, 77, 88, 99, 11, 121, 21, 42, 63, 84, 6, 27, 48, 69, 801, 21, 231, 441
Offset: 1
The triangle is:
1
2 4
3 6 9
4 8 21 61
5 1 15 2 52
etc
The non-reversed digit triangle is
A075362.
-
Table[IntegerReverse[n*Range[n]],{n,20}]//Flatten (* Harvey P. Dale, Jul 14 2024 *)
-
T(n, k) = subst(Polrev(digits(k*n)), x, 10); \\ Michel Marcus, Sep 16 2013
More terms from Bruce Corrigan (scentman(AT)myfamily.com), Aug 10 2005
A377133
Triangle read by rows: T(n,k) is the maximum volume of an integer-sided box that can be made from a piece of paper of size n X k by cutting away identical squares at each corner and folding up the sides, n >= 3, 3 <= k <= n.
Original entry on oeis.org
1, 2, 4, 3, 6, 9, 4, 8, 12, 16, 5, 10, 15, 20, 25, 6, 12, 18, 24, 30, 36, 7, 14, 21, 28, 35, 42, 50, 8, 16, 24, 32, 40, 48, 60, 72, 9, 18, 27, 36, 45, 56, 70, 84, 98, 10, 20, 30, 40, 50, 64, 80, 96, 112, 128, 11, 22, 33, 44, 55, 72, 90, 108, 126, 144, 162, 12, 24
Offset: 3
Triangle T(n,k) begins:
n\k 3 4 5 6 7 8 9 10 11 12 13 ...
3 1
4 2 4
5 3 6 9
6 4 8 12 16
7 5 10 15 20 25
8 6 12 18 24 30 36
9 7 14 21 28 35 42 50
10 8 16 24 32 40 48 60 72
11 9 18 27 36 45 56 70 84 98
12 10 20 30 40 50 64 80 96 112 128
13 11 22 33 44 55 72 90 108 126 144 162
-
A377113:=proc(n,k)
local a,x,V;
a:=0;
for x to (k-1)/2 do
V:=x*(n-2*x)*(k-2*x);
if V>a then
a:=V
fi
od;
return a
end proc;
seq(seq(A377113(n,k),k=3..n),n=3..14);
A360373
Triangular array T read by rows related to the multiplication table.
Original entry on oeis.org
1, 2, 4, 2, 3, 6, 9, 6, 3, 4, 8, 12, 16, 12, 8, 4, 5, 10, 15, 20, 25, 20, 15, 10, 5, 6, 12, 18, 24, 30, 36, 30, 24, 18, 12, 6, 7, 14, 21, 28, 35, 42, 49, 42, 35, 28, 21, 14, 7, 8, 16, 24, 32, 40, 48, 56, 64, 56, 48, 40, 32, 24, 16, 8, 9, 18, 27, 36, 45, 54, 63, 72, 81
Offset: 1
Table T(n, k) , n>=1 , 1<=k<=2*n-1.
n = 1 : 1 ;
n = 2 : 2, 4, 2 ;
n = 3 : 3, 6, 9, 6, 3 ;
n = 4 : 4, 8, 12, 16, 12, 8, 4 ;
n = 5 : 5, 10, 15, 20, 25, 20, 15, 10, 5 ;
n = 6 : 6, 12, 18, 24, 30, 36, 30, 24, 18, 12, 6 ;
n = 7 : 7, 14, 21, 28, 35, 42, 49, 42, 35, 28, 21, 14, 7 ;
n = 8 : 8, 16, 24, 32, 40, 48, 56, 64, 56, 48, 40, 32, 24, 16, 8 ;
...
-
T:= (n, k)-> n*min(k, 2*n-k):
seq(seq(T(n,k), k=1..2*n-1), n=1..10); # Alois P. Heinz, Feb 04 2023
Comments