cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A083303 Let Pi= sum(k>=0, u(k)/k!) where u(k)>=0 are integer (u(k)=A075874(k)), then sequence gives values of m such that u(m)=0.

Original entry on oeis.org

1, 2, 3, 9, 14, 57, 72, 76, 553, 1489, 6839, 44620
Offset: 1

Views

Author

Benoit Cloitre, Jun 03 2003

Keywords

Comments

Integers n such that frac((n-1)!*Pi) < 1/n.

Formula

A075874(a(n))=0

Extensions

a(10)-a(12) from Max Alekseyev, Jun 17 2011

A007514 Pi = Sum_{n >= 0} a(n)/n!.

Original entry on oeis.org

3, 0, 0, 0, 3, 1, 5, 6, 5, 0, 1, 4, 7, 8, 0, 6, 7, 10, 7, 10, 4, 10, 6, 16, 1, 11, 20, 3, 18, 12, 9, 13, 18, 21, 14, 34, 27, 11, 27, 33, 36, 18, 5, 18, 5, 23, 39, 1, 10, 42, 28, 17, 20, 51, 8, 42, 47, 0, 27, 23, 16, 52, 32, 52, 53, 24, 43, 61, 64, 18, 17, 11, 0, 53, 14, 62
Offset: 0

Views

Author

Keywords

Comments

The current name does not define a(n) without ambiguity. It is meant that for each n, a(n) is the largest integer such that the remainder of Pi - (partial sum up to n) remains positive. This leads to the FORMULA given below. - M. F. Hasler, Mar 20 2017

Examples

			Pi = 3/0! + 0/1! + 0/2! + 0/3! + 3/4! + 1/5! + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially same as A075874.
Pi in base n: A004601 to A004608, A000796, A068436 to A068440, A062964.

Programs

  • Mathematica
    p = N[Pi, 1000]; Do[k = Floor[p*n! ]; p = p - k/n!; Print[k], {n, 0, 75} ]
  • PARI
    x=Pi;vector(floor((y->y/log(y))(default(realprecision))),n,t=(n-1)!;k=floor(x*t);x-=k/t;k) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    C=1/Pi;x=0;vector(primepi(default(realprecision)),n,-x*n--+x=n!\C) \\ M. F. Hasler, Mar 20 2017

Formula

a(n) = floor(n!*Pi) - n*floor((n-1)!*Pi) for all n > 0. - M. F. Hasler, Mar 20 2017

A068461 Factorial, or factoradic, expansion of log(11) = Sum_{n>=1} a(n)/n!, with a(n) as large as possible.

Original entry on oeis.org

2, 0, 2, 1, 2, 4, 3, 3, 1, 2, 4, 0, 3, 13, 1, 12, 12, 13, 1, 16, 16, 0, 16, 12, 10, 9, 1, 23, 3, 22, 0, 28, 11, 14, 23, 16, 0, 14, 6, 1, 1, 14, 4, 25, 43, 0, 29, 10, 41, 19, 47, 14, 0, 51, 10, 47, 37, 45, 46, 56, 57, 45, 10, 32, 61, 15, 9, 67, 5, 9, 22, 25, 65, 56, 24, 12, 71, 9, 57
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			log(11) = 2 + 0/2! + 2/3! + 1/4! + 2/5! + 4/6! + 3/7! + 3/8! + 1/9! + ...
		

Crossrefs

Cf. A016634 (decimal expansion), A016739 (continued fraction).
Cf. A007514 vs. A075874 for factoradic expansion.
Cf. A067882 (log(2)), A322334 (log(3)), A322333 (log(5)), A068460 (log(7)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Log(11)] cat [Floor(Factorial(n)*Log(11)) - n*Floor(Factorial((n-1))*Log(11)) : n in [2..80]]; // G. C. Greubel, Dec 05 2018
    
  • Mathematica
    With[{b = Log[11]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 05 2018 *)
  • PARI
    vector(30, n, if(n>1, t=t%1*n, t=log(11))\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); b = log(11); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Dec 05 2018
    
  • Sage
    def a(n):
        if n==1: return floor(log(11))
        else: return expand(floor(factorial(n)*log(11)) - n*floor(factorial(n-1)*log(11)))
    [a(n) for n in (1..80)] # G. C. Greubel, Dec 05 2018

Extensions

Name edited and keyword cons,easy removed by M. F. Hasler, Nov 26 2018

A068451 Factorial expansion of the golden ratio (1+sqrt(5))/2 = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 0, 2, 4, 0, 6, 7, 1, 1, 8, 1, 6, 0, 11, 0, 10, 5, 6, 9, 15, 20, 10, 15, 1, 18, 5, 13, 9, 0, 13, 15, 2, 27, 28, 2, 32, 36, 11, 4, 34, 37, 0, 4, 32, 10, 4, 4, 32, 46, 39, 37, 2, 20, 27, 8, 54, 27, 45, 9, 26, 18, 59, 0, 22, 63, 41, 54, 65, 61, 45, 51, 61, 31, 68, 48, 34, 39, 71, 59
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A001622 (decimal expansion).
Cf. A075874 and A007514.

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor((1+Sqrt(5))/2)] cat [Floor(Factorial(n)*(1+Sqrt(5))/2) - n*Floor(Factorial((n-1))*(1+Sqrt(5))/2) : n in [2..80]]; // G. C. Greubel, Mar 21 2018
    
  • Mathematica
    With[{b = GoldenRatio}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    default(realprecision, 250); b = (1+sqrt(5))/2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    A068451(N=90,c=precision(sqrt(5)+1,logint(N!,10))/2)=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ M. F. Hasler, Nov 27 2018
    
  • Sage
    def A068451(n):
        if (n==1): return floor(golden_ratio)
        else: return expand(floor(factorial(n)*golden_ratio) - n*floor(factorial(n-1)*golden_ratio))
    [A068451(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

A068463 Factorial expansion of Gamma(3/4) = Sum_{n>=1} a(n)/n! where Gamma is Euler's gamma function.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 2, 0, 7, 2, 1, 5, 1, 12, 12, 12, 12, 5, 7, 9, 4, 20, 10, 9, 6, 17, 20, 18, 7, 6, 11, 9, 24, 3, 22, 8, 24, 33, 35, 33, 31, 12, 0, 27, 6, 31, 37, 37, 27, 31, 6, 24, 7, 17, 12, 1, 39, 41, 51, 48, 21, 8, 15, 26, 46, 52, 43, 39, 7, 21, 60, 24, 58, 21, 57, 58, 36, 60, 25, 7
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			Gamma(3/4) = 1 + 0/2! + 1/3! + 1/4! + 2/5! + 0/6! + 2/7! + ...
		

Crossrefs

Cf. A075874, A068465 (decimal expansion), A068464 (Gamma(1/4)).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); [Floor(Gamma(3/4))] cat [Floor(Factorial(n)*Gamma(3/4)) - n*Floor(Factorial((n-1))*Gamma(3/4)) : n in [2..80]]; // G. C. Greubel, Nov 27 2018
    
  • Mathematica
    With[{b = Gamma[3/4]}, Table[If[n == 1, Floor[b], Floor[n!*b]-n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 27 2018 *)
  • PARI
    A068463(N=90,c=gamma(precision(.75,logint(N!,10)+1)))=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ - M. F. Hasler, Nov 26 2018
    
  • PARI
    default(realprecision, 250); b = gamma(3/4); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 27 2018
    
  • Sage
    def A068463(n):
        if (n==1): return floor(gamma(3/4))
        else: return expand(floor(factorial(n)*gamma(3/4)) - n*floor(factorial(n-1)*gamma(3/4)))
    [A068463(n) for n in (1..80)] # G. C. Greubel, Nov 27 2018

Extensions

Name edited and keywords cons, easy removed by M. F. Hasler, Nov 26 2018

A068450 Factorial expansion of sqrt(Pi) = Sum_{n>0} a(n)/n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 1, 1, 3, 0, 5, 10, 6, 8, 12, 0, 10, 0, 12, 9, 6, 12, 22, 21, 24, 3, 14, 21, 13, 24, 21, 11, 8, 22, 27, 3, 8, 1, 36, 21, 27, 15, 2, 41, 22, 34, 8, 0, 4, 8, 39, 48, 27, 38, 22, 0, 23, 49, 19, 27, 29, 28, 40, 33, 21, 62, 7, 67, 33, 8, 30, 18, 60, 73, 61, 72, 42, 59, 22
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			sqrt(Pi) = 1 + 1/2! + 1/3! + 2/4! + 2/5! + 4/6! + 1/7! + ...
		

Crossrefs

Cf. A075874, A002161 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  R:= RealField(); [Floor(Sqrt(Pi(R)))] cat [Floor(Factorial(n)*Sqrt(Pi(R))) - n*Floor(Factorial((n-1))*Sqrt(Pi(R))) : n in [2..30]]; // G. C. Greubel, Mar 21 2018
    
  • Mathematica
    Table[If[n == 1, Floor[Sqrt[Pi]], Floor[n!*Sqrt[Pi]] - n*Floor[(n - 1)!*Sqrt[Pi]]], {n, 1, 50}] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    default(realprecision, 250); for(n=1,30, print1(if(n==1, floor(sqrt(Pi)), floor(n!*sqrt(Pi)) - n*floor((n-1)!*sqrt(Pi))), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=sqrt(Pi))\1) \\ M. F. Hasler, Nov 25 2018
    
  • Sage
    def A068450(n):
        if (n==1): return floor(sqrt(pi))
        else: return expand(floor(factorial(n)*sqrt(pi)) - n*floor(factorial(n-1)*sqrt(pi)))
    [A068450(n) for n in (1..80)] # G. C. Greubel, Nov 27 2018

Extensions

Keyword cons removed by R. J. Mathar, Jul 23 2009

A068453 Factorial expansion of sqrt(e) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 0, 3, 2, 5, 0, 4, 3, 9, 8, 2, 8, 0, 10, 15, 2, 10, 8, 19, 12, 4, 18, 23, 8, 4, 21, 15, 17, 1, 11, 19, 7, 25, 15, 3, 20, 5, 24, 25, 35, 9, 12, 25, 26, 22, 23, 11, 43, 46, 6, 0, 25, 27, 30, 6, 14, 20, 33, 5, 30, 23, 42, 4, 11, 19, 55, 63, 43, 12, 52, 51, 22, 29, 11, 8, 19, 35, 25
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A067840 (e^2), A075874 (Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); [Floor(Sqrt(Exp(1)))] cat [Floor(Factorial(n)*Sqrt(Exp(1))) - n*Floor(Factorial((n-1))* Sqrt(Exp(1))) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    With[{b = Sqrt[E]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=exp(.5))\1) \\ M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); b = sqrt(exp(1)); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A068453(n):
        if (n==1): return floor(sqrt(e))
        else: return expand(floor(factorial(n)*sqrt(e)) - n*floor(factorial(n-1)*sqrt(e)))
    [A068453(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Extensions

Name edited and keyword cons removed by M. F. Hasler, Nov 25 2018

A068454 Factorial expansion of zeta(5) = Sum_{n>=1} a(n)/n!, with a(n) as large as possible.

Original entry on oeis.org

1, 0, 0, 0, 4, 2, 4, 0, 8, 3, 4, 9, 10, 5, 3, 12, 4, 1, 10, 0, 6, 19, 0, 19, 10, 21, 19, 16, 3, 27, 24, 12, 12, 14, 7, 33, 27, 15, 28, 15, 7, 15, 7, 21, 13, 29, 16, 44, 39, 27, 39, 17, 6, 18, 2, 21, 21, 35, 29, 12, 13, 6, 39, 14, 1, 23, 55, 34, 10, 42, 70, 14, 42, 26, 74, 64, 12, 42, 14
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A075874 (same for Pi), A007514 (different variant).
Cf. A067279 (zeta(2)), A067277 (zeta(3)), A068447 (zeta(4)), A068455 (zeta(6)), A068456 (zeta(7)), A068457 (zeta(8)), A068458 (zeta(9)), A068459 (zeta(10)).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); b:=Evaluate(RiemannZeta(),5); [n eq 1 select Floor(b) else Floor(Factorial(n)*b) - n*Floor(Factorial(n)*b/n) : n in [1..100]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    t = Zeta[5]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* Amiram Eldar, Nov 25 2018 *)
    With[{b = Zeta[5]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    vector(N=100, n, if(n>1, c=c%1*n, c=zeta(precision(5.,N*log(N/2.7)\2.3+3)))\1) \\ Specific a(n) can be computed via the FORMULA. For repeated use the value of c can be stored as a global variable, to be re-computed with higher precision when log_10(n!) exceeds its precision. - M. F. Hasler, Nov 25 2018
    
  • Sage
    b=zeta(5)
    @cached_function
    def A068454(n):
        if n == 1: return floor(b)
        else: return expand(floor(factorial(n)*b) - n*floor(factorial(n-1)*b))
    [A068454(n) for n in (1..100)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = floor(c*n!) - n*floor(c*(n-1)!) = floor(frac(c*(n-1)!)*n) for n > 1, with c = zeta(5). - M. F. Hasler, Dec 20 2018

Extensions

Name edited and keyword cons removed by M. F. Hasler, Nov 25 2018

A240455 Primorial expansion of Pi.

Original entry on oeis.org

3, 0, 0, 4, 1, 8, 1, 0, 8, 19, 13, 10, 28, 29, 23, 30, 9, 32, 4, 26, 12, 27, 75, 28, 45, 30, 47, 65, 91, 83, 9, 92, 123, 44, 73, 32, 140, 102, 28, 75, 108, 30, 139, 4, 127, 88, 57, 182, 207, 172, 80, 126, 150, 232, 227, 19, 256, 238, 195, 44, 56, 58, 131, 160, 243, 222, 22, 47, 30, 226, 312, 130, 161, 68, 358, 52, 250, 152, 15, 38, 120, 195, 120, 263, 412, 115, 412, 427, 284, 361, 121, 413, 355, 75, 473, 355, 10, 177, 101, 71
Offset: 0

Views

Author

Albert Lau, Apr 05 2014

Keywords

Comments

The primorial expansion a(n) of a real number x is defined as x = Sum_{i>=0} a(i) / prime(i)# where a(0) = floor(x) and 0 <= a(i) < prime(i) for all i > 0.

Examples

			Pi = 3/prime(0)# + 0/prime(1)# + 0/prime(2)# + 4/prime(3)# + 1/prime(4)# + 8/prime(5)# + ... where prime(n)# = A002110(n) is the n-th primorial number.
		

Crossrefs

Cf. A000796 (decimal expansion), A075874 (factorial number system expansion).

Programs

  • Mathematica
    pe = Block[{x = #, $MaxExtraPrecision = \[Infinity]},
           Do[x = Prime[i] (x - Sow[x // Floor]) // Expand, {i, #2 - 1}];
           x // Floor // Sow] // Reap // Last // Last // Function;
    pe[\[Pi], 100]

Formula

x(0) = Pi; a(n) = floor(x(n)) where x(n + 1) = prime(n + 1) * (x(n) - a(n)) and prime(n) = A000040(n) is the n-th prime number. [corrected by Rémy Sigrist, Jan 06 2019]

A068452 Pi^2 = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

9, 1, 2, 0, 4, 2, 0, 6, 4, 0, 4, 11, 6, 4, 14, 8, 12, 6, 18, 12, 12, 14, 13, 2, 7, 20, 12, 2, 16, 21, 25, 26, 29, 19, 7, 3, 20, 3, 38, 7, 12, 19, 37, 1, 23, 32, 19, 32, 38, 45, 45, 27, 44, 34, 14, 49, 35, 29, 30, 57, 57, 18, 56, 48, 33, 19, 44, 35, 12, 56, 28, 38, 64, 35, 10, 45, 35, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

For the fractional part, this corresponds to the factoradic (or factorial base, or harmonic) expansion, but the integer part 9 = 3! + 2! + 1! would be [1, 1, 1] in factorial base, cf. A007623(9) = 111. - M. F. Hasler, Nov 27 2018

Crossrefs

Cf. A002388 (decimal expansion of Pi^2).
Similar expansions: A068450 (sqrt(Pi)), A075874 (Pi), A007514 (different variant for Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); R:=RealField(); [Floor(Pi(R)^2)] cat [Floor(Factorial(n)*Pi(R)^2) - n*Floor(Factorial((n-1))*Pi(R)^2) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Maple
    fexp := proc(x) local xres,a,n ; xres := x ; a := [] ; for n from 1 to 100 do a := [op(a),floor(n!*xres)] ; xres := xres-op(-1,a)/n! ; od: a ; end: Digits := 400 ; fexp(evalf(Pi^2)) ; Digits := 600 ; fexp(evalf(Pi^2)) ; # R. J. Mathar, Sep 30 2008
  • Mathematica
    p=N[Pi, 10000]^2; Do[k=Floor[p n!]; p=p - k / n!; Print[k], {n, 1000}] (* Vincenzo Librandi, Nov 24 2018 *)
    With[{b = Pi^2}, Table[If[n == 1, Floor[b], Floor[n!*b] -n*Floor[(n- 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    default(realprecision, 250); b = Pi^2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • PARI
    A068452(N=90, c=precision(Pi^2,logint(N!,10)))=vector(N, n, if(n>1, c=c%1*n, c)\1) \\ M. F. Hasler, Nov 27 2018
    
  • Sage
    def A068452(n):
        if (n==1): return floor(pi^2)
        else: return expand(floor(factorial(n)*pi^2) - n*floor(factorial(n-1)*pi^2))
    [A068452(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Extensions

Corrected beginning at 3rd term by R. J. Mathar, Sep 30 2008
Showing 1-10 of 13 results. Next