cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A247308 Layer counting sequence in the order-5 cubic honeycomb.

Original entry on oeis.org

1, 7, 37, 163, 661, 2643, 10497, 41511, 164073, 648495, 2562749, 10127291, 40020845, 158152811, 624980489, 2469769903, 9759926065, 38568829879, 152414547541, 602304889075, 2380161078405, 9405812345187, 37169461719153, 146884589311479, 580451843386809, 2293803210617951, 9064547264192237, 35820865853787467
Offset: 0

Views

Author

Tim Hutton, Sep 11 2014

Keywords

Comments

The number of cubes reachable by at most n steps across faces in the {4,3,5} tessellation of hyperbolic space, for n >= 0.

Crossrefs

For the {5,3,4} tessellation: A076765.
For the {5,4} tessellation: A054888.

Formula

a(d+17) = 3*a(d+16) + 2*a(d+15) + 7*a(d+14) + a(d+13) - 5*a(d+12) + 3*a(d+11) - 2*a(d+10) - 18*a(d+9) + 18*a(d+8) + 2*a(d+7) - 3*a(d+6) + 5*a(d+5) - a(d+4) - 7*a(d+3) - 2*a(d+2) - 3*a(d+1) + a(d) (conjectured, found experimentally and tested from 19 to 135). - Eryk Kopczynski, Jul 04 2020
Conjectured G.f.: (1+x) * (1+2*x+8*x^2+9*x^3+8*x^4+17*x^5+10*x^6+10*x^8+10*x^10+17*x^11+8*x^12+9*x^13+8*x^14+2*x^15+x^16) / ((1-x)^2 * (1-2*x-4*x^2-11*x^3-12*x^4-7*x^5-10*x^6-8*x^7+10*x^8-8*x^9-10*x^10-7*x^11-12*x^12-11*x^13-4*x^14-2*x^15+x^16)). - Natalia L. Skirrow, Apr 29 2025

Extensions

Offset and terms corrected and more terms added by Eryk Kopczynski, Jul 04 2020

A077826 Expansion of (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).

Original entry on oeis.org

1, 3, 10, 32, 101, 319, 1006, 3172, 10001, 31531, 99410, 313416, 988125, 3115319, 9821846, 30965900, 97627977, 307797347, 970410426, 3059468848, 9645763669, 30410754735, 95877738174, 302279267892, 953013259777, 3004619799579, 9472837914274, 29865561746840
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Partial sums of S(n, x), for x=1...10, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784.
Partial sums of A077833.

Programs

Formula

From Wesley Ivan Hurt, Jun 26 2022: (Start)
G.f.: (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).
a(n) = 3*a(n-1) + a(n-2) - a(n-3) - 2*a(n-4). (End)

A077827 Expansion of (1-x)^(-1)/(1-2*x-2*x^2-2*x^3).

Original entry on oeis.org

1, 3, 9, 27, 79, 231, 675, 1971, 5755, 16803, 49059, 143235, 418195, 1220979, 3564819, 10407987, 30387571, 88720755, 259032627, 756281907, 2208070579, 6446770227, 18822245427, 54954172467, 160446376243, 468445588275, 1367692273971, 3993168476979, 11658612678451
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002, Jun 05 2007

Keywords

Crossrefs

Partial sums of S(n, x), for x=1...11, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784, A097826.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x-2x^2-2x^3),{x,0,40}],x]  (* Harvey P. Dale, Mar 27 2011 *)
  • PARI
    Vec((1-x)^(-1)/(1-2*x-2*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

A077830 Expansion of 1/(1-3*x-2*x^2-3*x^3).

Original entry on oeis.org

1, 3, 11, 42, 157, 588, 2204, 8259, 30949, 115977, 434606, 1628619, 6103000, 22870056, 85702025, 321155187, 1203479779, 4509855786, 16899992477, 63330128340, 237319937332, 889320046107, 3332590398005, 12488371098225, 46798254229006, 175369276077483
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-3x-2x^2-3x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,3},{1,3,11},40] (* Harvey P. Dale, Nov 05 2021 *)

A145608 Numbers a(n)=k such that (1/3)*(5*(2k+1)^2-2) is A057080(n)^2.

Original entry on oeis.org

0, 3, 27, 216, 1704, 13419, 105651, 831792, 6548688, 51557715, 405913035, 3195746568, 25160059512, 198084729531, 1559517776739, 12278057484384, 96664942098336, 761041479302307, 5991666892320123, 47172293659258680, 371386682381749320, 2923921165394735883, 23019982640776137747
Offset: 0

Views

Author

Richard Choulet, Oct 14 2008

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==3,a[n]==8a[n-1]-a[n-2]+3},a,{n,30}] (* or *) LinearRecurrence[{9,-9,1},{0,3,27},30] (* Harvey P. Dale, May 06 2013 *)

Formula

a(n+2) = 8*a(n+1) - a(n) + 3.
a(n) = (A070997(n)-1)/2 = 3*A076765(n-1). - R. J. Mathar, Oct 16 2008
G.f.: -3*x / ( (x-1)*(x^2-8*x+1) ). - R. J. Mathar, Nov 27 2011
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=27. - Harvey P. Dale, May 06 2013

Extensions

Made definition and sequence consistent. Changed offset to 0. - R. J. Mathar, Oct 16 2008

A356836 Coordination sequence of the {5,3,4} hyperbolic honeycomb.

Original entry on oeis.org

1, 12, 102, 812, 6402, 50412, 396902, 3124812, 24601602, 193688012, 1524902502, 12005532012, 94519353602, 744149296812, 5858675020902, 46125250870412, 363143331942402, 2859021404668812, 22509027905408102, 177213201838596012, 1395196586803360002, 10984359492588284012
Offset: 0

Views

Author

Eryk Kopczynski, Aug 31 2022

Keywords

Comments

a(n) is the number of cells n steps from an (arbitrarily chosen) central cell in the {5,3,4} honeycomb.

Examples

			Each dodecahedral cell has 12 neighbors, so a(1) = 12.
		

Crossrefs

Formula

It appears thata(n) = 10*A095004(n) + 2. - Hugo Pfoertner, Aug 30 2022
Previous Showing 11-16 of 16 results.