A247308
Layer counting sequence in the order-5 cubic honeycomb.
Original entry on oeis.org
1, 7, 37, 163, 661, 2643, 10497, 41511, 164073, 648495, 2562749, 10127291, 40020845, 158152811, 624980489, 2469769903, 9759926065, 38568829879, 152414547541, 602304889075, 2380161078405, 9405812345187, 37169461719153, 146884589311479, 580451843386809, 2293803210617951, 9064547264192237, 35820865853787467
Offset: 0
For the {5,3,4} tessellation:
A076765.
For the {5,4} tessellation:
A054888.
Offset and terms corrected and more terms added by
Eryk Kopczynski, Jul 04 2020
A077826
Expansion of (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).
Original entry on oeis.org
1, 3, 10, 32, 101, 319, 1006, 3172, 10001, 31531, 99410, 313416, 988125, 3115319, 9821846, 30965900, 97627977, 307797347, 970410426, 3059468848, 9645763669, 30410754735, 95877738174, 302279267892, 953013259777, 3004619799579, 9472837914274, 29865561746840
Offset: 0
Partial sums of S(n, x), for x=1...10,
A021823,
A000217,
A027941,
A061278,
A089817,
A053142,
A092521,
A076765,
A092420,
A097784.
-
LinearRecurrence[{3,1,-1,-2},{1,3,10,32},30] (* Harvey P. Dale, May 12 2024 *)
-
Vec((1-x)^(-1)/(1-2*x-3*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
A077827
Expansion of (1-x)^(-1)/(1-2*x-2*x^2-2*x^3).
Original entry on oeis.org
1, 3, 9, 27, 79, 231, 675, 1971, 5755, 16803, 49059, 143235, 418195, 1220979, 3564819, 10407987, 30387571, 88720755, 259032627, 756281907, 2208070579, 6446770227, 18822245427, 54954172467, 160446376243, 468445588275, 1367692273971, 3993168476979, 11658612678451
Offset: 0
Partial sums of S(n, x), for x=1...11,
A021823,
A000217,
A027941,
A061278,
A089817,
A053142,
A092521,
A076765,
A092420,
A097784,
A097826.
A077830
Expansion of 1/(1-3*x-2*x^2-3*x^3).
Original entry on oeis.org
1, 3, 11, 42, 157, 588, 2204, 8259, 30949, 115977, 434606, 1628619, 6103000, 22870056, 85702025, 321155187, 1203479779, 4509855786, 16899992477, 63330128340, 237319937332, 889320046107, 3332590398005, 12488371098225, 46798254229006, 175369276077483
Offset: 0
Partial sums of S(n, x), for x=1...15,
A021823,
A000217,
A027941,
A061278,
A089817,
A053142,
A092521,
A076765,
A092420,
A097784,
A097826-
A097828,
A076139,
A097829.
-
CoefficientList[Series[1/(1-3x-2x^2-3x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,3},{1,3,11},40] (* Harvey P. Dale, Nov 05 2021 *)
A145608
Numbers a(n)=k such that (1/3)*(5*(2k+1)^2-2) is A057080(n)^2.
Original entry on oeis.org
0, 3, 27, 216, 1704, 13419, 105651, 831792, 6548688, 51557715, 405913035, 3195746568, 25160059512, 198084729531, 1559517776739, 12278057484384, 96664942098336, 761041479302307, 5991666892320123, 47172293659258680, 371386682381749320, 2923921165394735883, 23019982640776137747
Offset: 0
-
RecurrenceTable[{a[0]==0,a[1]==3,a[n]==8a[n-1]-a[n-2]+3},a,{n,30}] (* or *) LinearRecurrence[{9,-9,1},{0,3,27},30] (* Harvey P. Dale, May 06 2013 *)
Made definition and sequence consistent. Changed offset to 0. -
R. J. Mathar, Oct 16 2008
A356836
Coordination sequence of the {5,3,4} hyperbolic honeycomb.
Original entry on oeis.org
1, 12, 102, 812, 6402, 50412, 396902, 3124812, 24601602, 193688012, 1524902502, 12005532012, 94519353602, 744149296812, 5858675020902, 46125250870412, 363143331942402, 2859021404668812, 22509027905408102, 177213201838596012, 1395196586803360002, 10984359492588284012
Offset: 0
Each dodecahedral cell has 12 neighbors, so a(1) = 12.
Comments