cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A077052 Right Moebius transformation matrix, M, by antidiagonals.

Original entry on oeis.org

1, 0, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Oct 22 2002

Keywords

Comments

If S=(s(1),s(2),...) is a sequence written as a row vector, then S*M is the Moebius transform of S; i.e. its n-th term is Sum{mu(k)*s(k): k|n}. M is the transpose of the left Moebius transformation matrix, A077050.

Examples

			Northwest corner:
1 -1 -1 0 -1 1
0 1 0 -1 0 -1
0 0 1 0 0 -1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
		

Crossrefs

Formula

M=T^(-1), where T is the right summatory matrix, A077051.

A171233 Array, T(n,k) = 2*(n/k), if n mod k = 0; otherwise, T(n,k) = 1. Read by antidiagonals.

Original entry on oeis.org

2, 4, 1, 6, 2, 1, 8, 1, 1, 1, 10, 4, 2, 1, 1, 12, 1, 1, 1, 1, 1, 14, 6, 1, 2, 1, 1, 1, 16, 1, 4, 1, 1, 1, 1, 1, 18, 8, 1, 1, 2, 1, 1, 1, 1, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 22, 10, 6, 4, 1, 2, 1, 1, 1, 1, 1, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 26, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 28, 1, 8, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Ross La Haye, Dec 05 2009

Keywords

Comments

T(n,3): continued fraction expansion of e - 1.

Examples

			Array begins
2 1 1 1 ...
4 2 1 1 ...
6 1 2 1 ...
8 4 1 2 ...
...........
		

Crossrefs

Cf. T(n,1) = A005843(n-1), A171232, A077049.

Programs

  • Maple
    A171233 := proc(n,k) if n mod k <> 0 then 1; else 2*n/k ; end if; end proc: seq(seq(A171233(d-k+1,k),k=1..d),d=1..17) ; # R. J. Mathar, Dec 08 2009

Formula

T(n,k) = A171232(n,k) + A077049(n,k).

Extensions

Terms beyond the 6th antidiagonal from R. J. Mathar, Dec 08 2009

A247146 As a binary numeral, the bit 2^(m-1) of a(n) is 1 iff m is a proper divisor of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 11, 5, 19, 1, 47, 1, 67, 21, 139, 1, 295, 1, 539, 69, 1027, 1, 2223, 17, 4099, 261, 8267, 1, 16951, 1, 32907, 1029, 65539, 81, 133423, 1, 262147, 4101, 524955, 1, 1056871, 1, 2098187, 16661, 4194307, 1, 8423599, 65, 16777747, 65541
Offset: 1

Views

Author

Morgan L. Owens, Nov 21 2014

Keywords

Comments

a(n)==1 iff n is prime.
Apparently Moebius transform of A178472.
For n>1, the binary representation of a(n) is given by row (n-1) of A077049 (when read as a triangular array). - Tom Edgar, Nov 28 2014

Crossrefs

Programs

  • Mathematica
    With[{n=Range[100]},(1/2) ((Total/@(2^Divisors[n])) - 2^n)]
  • PARI
    a(n) = sumdiv(n, k, 2^(k-1)) - 2^(n-1); \\ Michel Marcus, Nov 25 2014
    
  • Python
    from sympy import divisors
    def A247146(n): return sum(1<Chai Wah Wu, Jul 15 2022

Formula

a(n) = A034729(n) - 2^(n-1). - Michel Marcus, Nov 22 2014

A171232 Array read by antidiagonals, T(n,k) = 2*(n/k) - 1, if n mod k = 0; otherwise, T(n,k) = 1.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 7, 1, 1, 1, 9, 3, 1, 1, 1, 11, 1, 1, 1, 1, 1, 13, 5, 1, 1, 1, 1, 1, 15, 1, 3, 1, 1, 1, 1, 1, 17, 7, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 9, 5, 3, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 11, 1, 1, 1, 1
Offset: 1

Views

Author

Ross La Haye, Dec 05 2009

Keywords

Comments

T(n,1): continued fraction expansion of coth(1).
T(n,2): continued fraction expansion of tan(1) = cot(pi/2 - 1).

Examples

			Array begins
1 1 1 1 1 ...
3 1 1 1 1 ...
5 1 1 1 1 ...
7 3 1 1 1 ...
9 1 1 1 1 ...
.............
		

Crossrefs

Cf. T(n, 1) = A005408(n-1), T(n, 2) = A093178(n-1), A171233, A077049.

Programs

  • Mathematica
    T[n_,k_] := If[Divisible[n, k], 2*(n/k) - 1, 1]; Table[T[n-k+1, k], {n, 1, 10}, {k,1, n}] //Flatten (* Amiram Eldar, Jun 29 2020 *)

Formula

T(n,k) = A171233(n,k) - A077049(n,k).

Extensions

More terms from Amiram Eldar, Jun 29 2020
Previous Showing 11-14 of 14 results.