cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A106422 Smallest number beginning with 2 and having exactly n prime divisors counted with multiplicity.

Original entry on oeis.org

2, 21, 20, 24, 200, 216, 288, 256, 2592, 2304, 2048, 20736, 20480, 24576, 204800, 221184, 294912, 262144, 2654208, 2359296, 2097152, 21233664, 20971520, 25165824, 209715200, 226492416, 201326592, 268435456, 2013265920, 2415919104
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(1) = 2, a(5) = 200 = 2^3*5^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue; local pq, t, p, x, i;
        initialize(pq);
        insert([-2^n, 2$n], pq);
        do
          t:= extract(pq);
          x:= -t[1];
          if floor(x/10^ilog10(x)) = 2 then return x fi;
          p:= nextprime(t[-1]);
          for i from n+1 to 2 by -1 while t[i] = t[-1] do
            insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq)
          od;
        od
    end proc:
    map(f, [$1..40]); # Robert Israel, Apr 15 2025
  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A106422(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(1<mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106423 Smallest number beginning with 3 and having exactly n prime divisors counted with multiplicity.

Original entry on oeis.org

3, 33, 30, 36, 32, 324, 320, 384, 3200, 3456, 3072, 31104, 30720, 36864, 32768, 331776, 327680, 393216, 3276800, 3538944, 3145728, 31850496, 31457280, 37748736, 33554432, 339738624, 301989888, 3057647616, 3019898880, 3623878656
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(1) = 3, a(6) = 324 = 2^2*3^4.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue; local pq, t,p,x,i;
        initialize(pq);
        insert([-2^n,2$n],pq);
        do
          t:= extract(pq);
          x:= -t[1];
          if floor(x/10^ilog10(x)) = 3 then return x fi;
          p:= nextprime(t[-1]);
          for i from n+1 to 2 by -1 while t[i] = t[-1] do
            insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]),p$(n+2-i)],pq)
          od;
        od
    end proc:
    map(f, [$1..50]); # Robert Israel, Sep 06 2024
  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A106423(n):
        if n == 1: return 3
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(1<mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106424 Smallest number beginning with 4 and having exactly n prime divisors counted with multiplicity.

Original entry on oeis.org

41, 4, 42, 40, 48, 400, 432, 4000, 4032, 40000, 4608, 4096, 41472, 40960, 49152, 409600, 442368, 4063232, 4128768, 40310784, 4718592, 4194304, 42467328, 41943040, 411041792, 419430400, 452984832, 402653184, 4076863488, 4026531840
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(1) = 41, a(3) = 42 = 2*3*7.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A106424(n):
        if n == 1: return 41
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(1<mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106425 Smallest number beginning with 5 and having exactly n prime divisors counted with multiplicity.

Original entry on oeis.org

5, 51, 50, 54, 500, 504, 5000, 576, 512, 5184, 5120, 50176, 51200, 55296, 507904, 516096, 5038848, 589824, 524288, 5308416, 5242880, 51380224, 52428800, 56623104, 50331648, 509607936, 503316480, 5096079360, 536870912, 5435817984
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(4) = 54 = 2*3^3.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A106425(n):
        if n == 1: return 5
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(1<mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106426 Smallest number beginning with 6 and having exactly n prime divisors counted with multiplicity.

Original entry on oeis.org

61, 6, 63, 60, 612, 64, 648, 640, 6048, 6400, 6912, 6144, 62208, 61440, 602112, 65536, 663552, 655360, 6029312, 6553600, 60162048, 6291456, 63700992, 62914560, 616562688, 67108864, 679477248, 603979776, 6115295232, 6039797760
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(4) = 60 = 2^2*3*5.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A106426(n):
        if n == 1: return 61
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(1<mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106427 Smallest number beginning with 7 and having exactly n prime divisors counted with multiplicity.

Original entry on oeis.org

7, 74, 70, 708, 72, 729, 704, 7056, 768, 7776, 7168, 70656, 71680, 702464, 73728, 746496, 720896, 7225344, 786432, 7962624, 7077888, 71663616, 70778880, 700710912, 75497472, 764411904, 704643072, 7113539584, 7046430720
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(3) = 70 = 2*5*7.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A106427(n):
        if n == 1: return 7
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(1<mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024

A106428 Smallest number beginning with 8 and having exactly n prime divisors counted with multiplicity.

Original entry on oeis.org

83, 82, 8, 81, 80, 810, 800, 864, 8000, 8064, 80000, 80640, 8192, 82944, 81920, 802816, 819200, 884736, 8126464, 8257536, 80621568, 80216064, 8388608, 84934656, 83886080, 822083584, 838860800, 8120172544, 805306368, 8153726976
Offset: 1

Views

Author

Ray Chandler, May 02 2005

Keywords

Examples

			a(3) = 8 = 2^3.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A106428(n):
        if n == 1: return 83
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        for l in count(len(str(1<mmin:
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    mmid = f(kmid)
                    if mmid > mmin:
                        kmax, mmax = kmid, mmid
                    else:
                        kmin, mmin = kmid, mmid
        return kmax # Chai Wah Wu, Sep 12 2024
Previous Showing 21-27 of 27 results.