cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A259131 Numbers n such that 13*n^2 + 52 is a square.

Original entry on oeis.org

3, 36, 393, 4287, 46764, 510117, 5564523, 60699636, 662131473, 7222746567, 78788080764, 859446141837, 9375119479443, 102266868132036, 1115560429972953, 12168897861570447, 132742316047301964, 1447996578658751157, 15795220049198960763, 172299423962529817236, 1879498443538629028833, 20502183454962389499927
Offset: 1

Views

Author

Derek Orr, Jun 18 2015

Keywords

Comments

The limit of a(n)/a(n-1) approaches (11+sqrt(117))/2 as n -> infinity.
The continued fraction [a(n); a(n), a(n), ...] = ((3+sqrt(13))/2)^(2*n-1).
Equivalently, numbers n such that (n^2+4)/13 is a square.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(13)). - Greg Dresden, Jul 22 2019
As 13*n^2 + 52 = 13 * (n^2 + 4), n == 3 (mod 13) or n == 10 (mod 13) alternately. - Bernard Schott, Jul 23 2019

Crossrefs

Programs

  • Magma
    I:=[3,36]; [n le 2 select I[n] else 11*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 23 2019
  • Mathematica
    Table[Floor[((3 + Sqrt[13])/2)^(2*n + 1) + ((3 + Sqrt[13])/2)^(1 - 2 n)], {n, 21}] (* Michael De Vlieger, Jun 20 2015 *)
    LinearRecurrence[{11, -1}, {3, 36}, 25] (* Vincenzo Librandi, Jul 23 2019 *)
  • PARI
    for(n=1,20,q=((3+sqrt(13))/2)^(2*n-1);print1(contfrac(q)[1],", "))
    

Formula

G.f.: 3*x*(1+x)/(1-11*x+x^2).
a(n) = 11*a(n-1) - a(n-2); a(0) = 3, a(1) = 36.
a(n) = floor(((3+sqrt(13))/2)^(2*n+1)+((3+sqrt(13))/2)^(1-2*n)).
a(n) = 3*A097783(n-1). - R. J. Mathar, Jun 07 2016

A270444 Expansion of 2*(1+2*x) / (1-8*x+4*x^2).

Original entry on oeis.org

2, 20, 152, 1136, 8480, 63296, 472448, 3526400, 26321408, 196465664, 1466439680, 10945654784, 81699479552, 609813217280, 4551707820032, 33974409691136, 253588446248960, 1892809931227136, 14128125664821248, 105453765593661440
Offset: 1

Views

Author

Altug Alkan, Mar 17 2016

Keywords

Comments

If p is an odd prime, a((p+1)/2) == 2 mod p. In other words, a((p+1)/2) - 2^p is divisible by p where p is an odd prime.

Examples

			a(2) = 20 because (1 + sqrt(3))^3 + (1 - sqrt(3))^3 = 20.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2(1+2x)/(1-8x+4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{8,-4},{2,20},30] (* Harvey P. Dale, Jun 09 2020 *)
  • PARI
    Vec(2*(1+2*x)/(1-8*x+4*x^2) + O(x^100))

Formula

G.f.: 2*(1+2*x)/(1-8*x+4*x^2).
a(n) = (1+sqrt(3))^(2*n-1) + (1-sqrt(3))^(2*n-1).
a(n) = 2 * A107903(n-1).

A270445 Expansion of 2*x*(1+4*x) / (1-12*x+16*x^2).

Original entry on oeis.org

2, 32, 352, 3712, 38912, 407552, 4268032, 44695552, 468058112, 4901568512, 51329892352, 537533612032, 5629125066752, 58948963008512, 617321555034112, 6464675252273152, 67698958146732032, 708952693724413952, 7424248994345254912
Offset: 1

Views

Author

Altug Alkan, Mar 17 2016

Keywords

Comments

If p is an odd prime, a((p+1)/2) == 2 mod p. In other words, a((p+1)/2) - 2^p is divisible by p where p is an odd prime.

Examples

			a(2) = 32 because (1 + sqrt(5))^3 + (1 - sqrt(5))^3 = 32.
		

Crossrefs

Programs

  • PARI
    Vec(2*x*(1+4*x)/(1-12*x+16*x^2) + O(x^50)) \\ Colin Barker, Mar 17 2016

Formula

a(n) = 12*a(n-1) - 16*a(n-2) for n>2. G.f.: 2*x*(1+4*x) / (1-12*x+16*x^2). - Colin Barker, Mar 17 2016
a(n) = (1+sqrt(5))^(2*n-1) + (1-sqrt(5))^(2*n-1).

A175033 Numbers n such that (ceiling(sqrt(n*n/2)))^2 - n*n/2 = 17/2.

Original entry on oeis.org

9, 15, 55, 89, 321, 519, 1871, 3025, 10905, 17631, 63559, 102761, 370449, 598935, 2159135, 3490849, 12584361, 20346159, 73347031, 118586105, 427497825, 691170471
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 09 2009

Keywords

Comments

Let (ceiling(sqrt(n*n/2)))^2 - n*n/2 = i. Then for i=1/2 we have A002315, for i=1 we have A005319, for i=2 we have A077444, for i=7/2 we have A077446, for i=4 we have A081554.
Conjecture: a(n) = 6*a(n-2) - a(n-4). - Charles R Greathouse IV, Apr 30 2016

Crossrefs

Programs

  • PARI
    lista(nn)=for (n=1, nn, if ((ceil(sqrt(n*n/2)))^2 - n*n/2 == 17/2, print1(n, ", "));); \\ Michel Marcus, Jun 02 2013
    
  • PARI
    forstep(n=9,1e9,2, if((sqrtint(n^2\2)+1)^2==(n^2+17)/2, print1(n", "))) \\ Charles R Greathouse IV, Apr 30 2016

Extensions

More terms from Michel Marcus, Jun 02 2013
a(17)-a(22) from Charles R Greathouse IV, Apr 30 2016

A351898 Decimal expansion of metallic ratio for N = 14.

Original entry on oeis.org

1, 4, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9
Offset: 2

Views

Author

A.H.M. Smeets, Feb 24 2022

Keywords

Comments

Decimal expansion of continued fraction [14; 14, 14, 14, ...].
Also largest solution of x^2 - 14 x - 1 = 0.
Essentially the same digit sequence as A010503, A157214, A174968 and A268683.
The metallic ratio's for N = A077444(n) are equal to powers of the silver ratio, i.e., A014166^(2n-1); this constant represents the special case for N = A077444(2).

Examples

			14.0710678118654752440084436210484903928483593...
		

Crossrefs

Metallic ratios: A001622 (N=1), A014176 (N=2), A098316 (N=3), A098317 (N=4), A098318 (N=5), A176398 (N=6), A176439 (N=7), A176458 (N=8), A176522 (N=9), A176537 (N=10), A244593 (N=11).

Programs

  • Mathematica
    RealDigits[7 + 5*Sqrt[2], 10, 100][[1]] (* Amiram Eldar, Feb 24 2022 *)
  • PARI
    (1+sqrt(2))^3

Formula

Equals 2 + 5*A014176.
Equals A014176^3.
Equals exp(arcsinh(7)). - Amiram Eldar, Jul 04 2023

A352403 Indices of metallic means that are powers of other metallic means.

Original entry on oeis.org

4, 11, 14, 29, 36, 76, 82, 140, 199, 234, 364, 393, 478, 521, 536, 756, 1030, 1364, 1764, 2236, 2786, 3420, 3571, 3775, 4144, 4287, 4964, 5886, 6916, 8060, 8886, 9324, 9349, 10714, 12236, 13896, 15700, 16238, 17654, 18557, 19764, 22036, 24476, 27090, 29884
Offset: 1

Views

Author

Douglas Blumeyer, Mar 14 2022

Keywords

Comments

Metallic mean k is mm(k) = (k + sqrt(k^2 + 4))/2.
The 4th metallic mean (mm), sometimes called the "copper" mean, is mm(4) = (4 + sqrt(16 + 4))/2 = 4.236... This value is also = 1.618...^3, where 1.618... is the 1st mm, the "golden" one, or (1 + sqrt(1 + 4))/2. This can be shown algebraically.
Any odd power of an mm will give another mm. The odd powers of the 1st mm are:
phi^1 = 1.618..., the 1st mm,
phi^3 = 4.236..., the 4th mm,
phi^5 = 11.090..., the 11th mm,
phi^7 = 29.034..., the 29th mm,
etc.
The indices of these mm's are 1, 4, 11, 29, 76, ... (A002878).
In parallel, the powers of the 2nd mm are:
slv^1 = 2.414..., the 2nd mm,
slv^3 = 14.071..., the 14th mm,
slv^5 = 82.012..., the 82nd mm,
etc.
The indices of these mm's are 2, 14, 82, 478, 2786, ... (A077444).
The indices of the mm's for the 3rd mm are A259131. The 4th mm's are A267797.
Every mm produces such a sequence.
The union of all such sequences (excluding their first terms) is this sequence.

Examples

			76 is a term since mm(76) = mm(1)^9 is a power of an earlier mean (the golden ratio in this case, and 76 is a Lucas number).
From _Peter Luschny_, Mar 16 2022: (Start)
A representation of the values claimed in the definition is given for the first 8 terms by:
( 4  +  2*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^3.
(11  +  5*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^5.
(14  +  5*sqrt(8)) / 2 = ((2 + sqrt(8)) / 2)^3.
(29  + 13*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^7.
(36  + 10*sqrt(13))/ 2 = ((3 + sqrt(13))/ 2)^3.
(76  + 34*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^9.
(82  + 29*sqrt(8)) / 2 = ((2 + sqrt(8)) / 2)^5.
(140 + 26*sqrt(29))/ 2 = ((5 + sqrt(29))/ 2)^3.
(End)
		

Crossrefs

Union of A002878, A077444, A259131, A267797, etc., minus each sequence's first entry.

Programs

  • Mathematica
    getMetallicMean[n_] := (n + Power[Power[n, 2] + 4, 1 / 2]) / 2;
    getMetallicCompositesUpTo[maxCandidateIndex_] := Module[
      {sequence, metallicMeanIndex, metallicMean, oddPower, candidateIndex},
      sequence = {};
      metallicMeanIndex = 1;
      While[
        True,
        (* skip metallic means already shown to be a power of another *)
        If[MemberQ[sequence, metallicMeanIndex], metallicMeanIndex++];
        metallicMean = getMetallicMean[metallicMeanIndex];
        oddPower = 3;
        While[
          True,
          candidateIndex = Floor[Power[metallicMean, oddPower]];
          If[
            candidateIndex <= maxCandidateIndex,
            AppendTo[sequence, candidateIndex];
            oddPower += 2,
            Break[]
          ]
        ];
        If[
          oddPower == 3,
          (* no chance of finding further results below the max, if even the first candidate at this index exceeded it *)
          Break[],
          metallicMeanIndex++
        ];
      ];
      Sort[sequence]
    ];
    getMetallicCompositesUpTo[50000]
Previous Showing 11-16 of 16 results.